Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2020


Deep neural networks (DNNs) have had tremendous success in a variety of statistical learning applications due to their vast expressive power. Most applications run DNNs on the cloud on parallelized architectures. There is a need for for efficient DNN inference on edge with low precision hardware and analog accelerators. To make trained models more robust for this setting, quantization and analog compute noise are modeled as weight space perturbations to DNNs and an information theoretic regularization scheme is used to penalize the KL-divergence between perturbed and unperturbed models. This regularizer has similarities to both natural gradient descent and knowledge distillation, …

Contributors
Kadambi, Pradyumna, Berisha, Visar, Dasarathy, Gautam, et al.
Created Date
2019

While artificial intelligence (AI) has seen enormous technical progress in recent years, less progress has occurred in understanding the governance issues raised by AI. In this dissertation, I make four contributions to the study and practice of AI governance. First, I connect AI to the literature and practices of responsible research and innovation (RRI) and explore their applicability to AI governance. I focus in particular on AI’s status as a general purpose technology (GPT), and suggest some of the distinctive challenges for RRI in this context such as the critical importance of publication norms in AI and the need for …

Contributors
Brundage, Miles, Guston, David, Keeler, Lauren, et al.
Created Date
2019

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of robotic manipulator arms. The first part of this thesis develops and investigates new methods for addressing these problems through hierarchical task and motion planning for manipulation with a focus on autonomous construction of free-standing structures using precision-cut planks. These planks can be arranged in various orientations to design complex structures; …

Contributors
Kumar, Kislay, Srivastava, Siddharth, Zhang, Yu, et al.
Created Date
2019

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish any desired tasks by dynamically populating puzzle shaped blocks encoding the robot’s possible actions, allowing them to carry out tasks like navigation, planning, and manipulation by connecting blocks instead of writing code. Roblocks has two levels, where in the first level users are made to re-arrange a jumbled set of …

Contributors
Dave, Chirav, Srivastava, Siddharth, Hsiao, Ihan, et al.
Created Date
2019

Significance of real-world knowledge for Natural Language Understanding(NLU) is well-known for decades. With advancements in technology, challenging tasks like question-answering, text-summarizing, and machine translation are made possible with continuous efforts in the field of Natural Language Processing(NLP). Yet, knowledge integration to answer common sense questions is still a daunting task. Logical reasoning has been a resort for many of the problems in NLP and has achieved considerable results in the field, but it is difficult to resolve the ambiguities in a natural language. Co-reference resolution is one of the problems where ambiguity arises due to the semantics of the sentence. …

Contributors
Prakash, Ashok, Baral, Chitta, Devarakonda, Murthy, et al.
Created Date
2019

Computer science education is an increasingly vital area of study with various challenges that increase the difficulty level for new students resulting in higher attrition rates. As part of an effort to resolve this issue, a new visual programming language environment was developed for this research, the Visual IoT and Robotics Programming Language Environment (VIPLE). VIPLE is based on computational thinking and flowchart, which reduces the needs of memorization of detailed syntax in text-based programming languages. VIPLE has been used at Arizona State University (ASU) in multiple years and sections of FSE100 as well as in universities worldwide. Another major …

Contributors
De Luca, Gennaro, Chen, Yinong, Liu, Huan, et al.
Created Date
2020

Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the high costs of remediation incentivizes avoidance over response. Yet, avoidance implies the ability to predict - a notoriously difficult task due to high rates of false positives, difficulty in finding data that is indicative of future events, and the unexplainable results from machine learning algorithms. In this dissertation, these challenges are addressed by presenting three artificial intelligence (AI) approaches to …

Contributors
Almukaynizi, Mohammed, Shakarian, Paulo, Huang, Dijiang, et al.
Created Date
2019

The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment to further the learning process. The behaviour is optimized by maximizing a reward function, which assigns high numerical values to desired behaviours. Especially in robotics, such interactions with the environment are expensive in terms of the required execution time, human involvement, and mechanical degradation of the system itself. Therefore, this thesis aims to introduce sample-efficient reinforcement learning methods which are …

Contributors
Luck, Kevin Sebastian, Ben Amor, Hani, Aukes, Daniel, et al.
Created Date
2019

In order to deploy autonomous multi-robot teams for humanitarian demining in Colombia, two key problems need to be addressed. First, a robotic controller with limited power that can completely cover a dynamic search area is needed. Second, the Colombian National Army (COLAR) needs to increase its science, technology and innovation (STI) capacity to help develop, build and maintain such robots. Using Thangavelautham's (2012, 2017) Artificial Neural Tissue (ANT) control algorithm, a robotic controller for an autonomous multi-robot team was developed. Trained by a simple genetic algorithm, ANT is an artificial neural network (ANN) controller with a sparse, coarse coding network …

Contributors
Kwon, Byong, Castillo-Chavez, Carlos, Thangavelautham, Jekanthan, et al.
Created Date
2019

While in recent years deep learning (DL) based approaches have been the popular approach in developing end-to-end question answering (QA) systems, such systems lack several desired properties, such as the ability to do sophisticated reasoning with knowledge, the ability to learn using less resources and interpretability. In this thesis, I explore solutions that aim to address these drawbacks. Towards this goal, I work with a specific family of reading comprehension tasks, normally referred to as the Non-Extractive Reading Comprehension (NRC), where the given passage does not contain enough information and to correctly answer sophisticated reasoning and ``additional knowledge" is required. …

Contributors
Mitra, Arindam, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2019