Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2019


Turing test has been a benchmark scale for measuring the human level intelligence in computers since it was proposed by Alan Turing in 1950. However, for last 60 years, the applications such as ELIZA, PARRY, Cleverbot and Eugene Goostman, that claimed to pass the test. These applications are either based on tricks to fool humans on a textual chat based test or there has been a disagreement between AI communities on them passing the test. This has led to the school of thought that it might not be the ideal test for predicting the human level intelligence in machines. Consequently, …

Contributors
Sharma, Arpit, Baral, Chita, Lee, Joohyung, et al.
Created Date
2014

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations. Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse …

Contributors
Sattigeri, Prasanna, Spanias, Andreas, Thornton, Trevor, et al.
Created Date
2014

Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue task in an uncertain virtual environment. Conditions are tested emulating a remotely controlled robot versus an intelligent one. Differences in performance, situation awareness, trust, workload, and communications are measured. The Intelligent robot condition resulted in higher levels of performance and operator situation awareness (SA). Dissertation/Thesis

Contributors
Bartlett, Cade Earl, Cooke, Nancy J, Kambhampati, Subbarao, et al.
Created Date
2015

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions. In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found. Because these answers must be defined based on something, it is better …

Contributors
Vo, Nguyen Ha, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2015

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing …

Contributors
Narayanan, Vignesh, Kambhampati, Subbarao, Zhang, Yu, et al.
Created Date
2015

Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system …

Contributors
Wang, Yuan, Dasgupta, Partha, Davulcu, Hasan, et al.
Created Date
2015

For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model when it is represented by performance of the teachable agent. The feedback system represents performance of the teachable agent, and not of a student. Data in the feedback system is thus updated according to a student's understanding of the subject. This provides students an opportunity to enhance their understanding of …

Contributors
Upadhyay, Abha, Walker, Erin, Nelson, Brian, et al.
Created Date
2016

Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear variation patterns using deep learning autoencoders is proposed. The approach provides a functional mapping from a low-dimensional representation to the original spatially-dense data that is both interpretable and efficient with respect to preserving information. Experimental results indicate that deep learning autoencoders outperform manifold learning and principal component analysis in reproducing …

Contributors
Howard, Phillip Ryan, Runger, George, Montgomery, Douglas, et al.
Created Date
2016

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide …

Contributors
Bartholomew, Michael James, Lee, Joohyung, Bazzi, Rida, et al.
Created Date
2016

The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably use with silhouettes in the place of shadow to emphasize indifference to interior features. In a manner of speaking, the shadow is an alter ego that imitates the individual. The principal value of shadow is its non-invasive behaviour of reflecting precisely the actions of the individual it is attached to. …

Contributors
Seshasayee, Sudarshan Prashanth, Sha, Xin Wei, Turaga, Pavan, et al.
Created Date
2016