Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2019


In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition, question answering and sentence classification. Traditionally, sentence vector representations are learnt from its constituent word representations, also known as word embeddings. Various methods to learn the distributed representation (embedding) of words have been proposed using the notion of Distributional Semantics, i.e. “meaning of a word is characterized by the company …

Contributors
Rath, Trideep, Baral, Chitta, Li, Baoxin, et al.
Created Date
2017

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical …

Contributors
Demir, Mustafa, Cooke, Nancy J, Bekki, Jennifer, et al.
Created Date
2017

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes. Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo …

Contributors
Li, Jinjin, Karam, Lina, Chakrabarti, Chaitali, et al.
Created Date
2017

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are …

Contributors
Loney, Nikhil, Lee, Joohyung, Fainekos, Georgios, et al.
Created Date
2017

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically …

Contributors
Bahl, Neeraj Dharampal, Bansal, Ajay, Amresh, Ashish, et al.
Created Date
2017

Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been …

Contributors
Singh, Shibani, Wang, Yalin, Li, Baoxin, et al.
Created Date
2017

Answer Set Programming (ASP) is one of the main formalisms in Knowledge Representation (KR) that is being widely applied in a large number of applications. While ASP is effective on Boolean decision problems, it has difficulty in expressing quantitative uncertainty and probability in a natural way. Logic Programs under the answer set semantics and Markov Logic Network (LPMLN) is a recent extension of answer set programs to overcome the limitation of the deterministic nature of ASP by adopting the log-linear weight scheme of Markov Logic. This thesis investigates the relationships between LPMLN and two other extensions of ASP: weak constraints …

Contributors
Yang, Zhun, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2017

To ensure system integrity, robots need to proactively avoid any unwanted physical perturbation that may cause damage to the underlying hardware. In this thesis work, we investigate a machine learning approach that allows robots to anticipate impending physical perturbations from perceptual cues. In contrast to other approaches that require knowledge about sources of perturbation to be encoded before deployment, our method is based on experiential learning. Robots learn to associate visual cues with subsequent physical perturbations and contacts. In turn, these extracted visual cues are then used to predict potential future perturbations acting on the robot. To this end, we …

Contributors
Sur, Indranil, Amor, Heni B, Fainekos, Georgios, et al.
Created Date
2017

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source …

Contributors
Demakethepalli Venkateswara, Hemanth, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2017

Achieving human level intelligence is a long-term goal for many Artificial Intelligence (AI) researchers. Recent developments in combining deep learning and reinforcement learning helped us to move a step forward in achieving this goal. Reinforcement learning using a delayed reward mechanism is an approach to machine intelligence which studies decision making with control and how a decision making agent can learn to act optimally in an environment-unaware conditions. Q-learning is one of the model-free reinforcement directed learning strategies which uses temporal differences to estimate the performances of state-action pairs called Q values. A simple implementation of Q-learning algorithm can be …

Contributors
Gankidi, Pranay Reddy, Thangavelautham, Jekanthan, Ren, Fengbo, et al.
Created Date
2016