Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


One of the greatest problems facing society today is the development of a sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low molecular weight precursors into complex molecules. A number of inorganic catalysts have been reported that mimic the active sites of energy-relevant enzymes such as hydrogenases and carbon monoxide dehydrogenase. However, these inorganic models fail to achieve the high activity of the enzymes, which function in aqueous systems, as they …

Contributors
Sommer, Dayn Joseph, Ghirlanda, Giovanna, Redding, Kevin, et al.
Created Date
2016

Generating amorphous solid dispersions (ASDs) containing active pharmaceutical ingredients has become a favorable technique of emerging prominence to improve drug solubility and overall bioavailability. Cannabidiol (CBD) has now become a major focus in cannabinoid research due to its ability to serve as an anti-inflammatory agent, showing promising results in treating a wide array of debilitating diseases and pathologies. The following work provides evidence for generating homogenous glass phase amorphous solid dispersions containing 50% (w/w) up to 75% (w/w) CBD concentrations in the domain size of 2 – 5 nm. Concentrations up to 85% (w/w) CBD were concluded homogenous in the …

Contributors
Blass, Brandon Lewis, Yarger, Jeff L, Holland, Greg, et al.
Created Date
2019