Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2010 2019


In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed turns. Almost all DNA dependent cellular processes, such as DNA duplication, transcription, DNA repair and recombination, take place in the chromatin form. Based on the critical importance of appropriate chromatin condensation, this thesis focused on the folding behavior of the nucleosome array reconstituted using different templates with various controllable factors …

Contributors
Fu, Qiang, Lindsay, Stuart M, Yan, Hao, et al.
Created Date
2010

A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors of DNA and RNA. Threose nucleic acid (TNA) is capable of forming stable helical structures with complementary strands of itself and RNA. This provides a plausible mechanism for genetic information transfer between TNA and RNA. Therefore TNA has been proposed as a potential RNA progenitor. Using molecular evolution, functional sequences …

Contributors
Zhang, Su, Chaut, John C, Ghirlanda, Giovanna, et al.
Created Date
2011

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in …

Contributors
Yu, Hanyang, Chaput, John C, Chen, Julian, et al.
Created Date
2013

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are …

Contributors
Pal, Suchetan, Liu, Yan, Yan, Hao, et al.
Created Date
2012

DNA nanotechnology has been a rapidly growing research field in the recent decades, and there have been extensive efforts to construct various types of highly programmable and robust DNA nanostructures. Due to the advantage that DNA nanostructure can be used to organize biochemical molecules with precisely controlled spatial resolution, herein we used DNA nanostructure as a scaffold for biological applications. Targeted cell-cell interaction was reconstituted through a DNA scaffolded multivalent bispecific aptamer, which may lead to promising potentials in tumor therapeutics. In addition a synthetic vaccine was constructed using DNA nanostructure as a platform to assemble both model antigen and …

Contributors
Liu, Xiaowei, Liu, Yan, Chang, Yung, et al.
Created Date
2012

Nature is a master at organizing biomolecules in all intracellular processes, and researchers have conducted extensive research to understand the way enzymes interact with each other through spatial and orientation positioning, substrate channeling, compartmentalization, and more. DNA nanostructures of high programmability and complexity provide excellent scaffolds to arrange multiple molecular/macromolecular components at nanometer scale to construct interactive biomolecular complexes and networks. Due to the sequence specificity at different positions of the DNA origami nanostructures, spatially addressable molecular pegboard with a resolution of several nm (less than 10 nm) can be achieved. So far, DNA nanostructures can be used to build …

Contributors
Yang, Yuhe Renee, Yan, Hao, Liu, Yan, et al.
Created Date
2016

DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate inter-molecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of …

Contributors
Liu, Minghui, Yan, Hao, Liu, Yan, et al.
Created Date
2013

The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology and even with complex curvatures. In addition, after construction of enough amounts DNA structure candidates, DNA structure template, with excellent spatial addressability, had been used to direct the assembly of different nanomaterials, including nanoparticles and proteins, to produce different functional nanomaterials. However there are still many challenges to fabricate functional …

Contributors
Zhao, Zhao, Yan, Hao, Liu, Yan, et al.
Created Date
2013

Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short template sequence in TR. Unlike TERT, TR is extremely divergent in size, sequence and structure and has only been identified in three evolutionarily distant groups. The lack of knowledge on TR from important model organisms has been a roadblock for vigorous studies on telomerase regulation. To address this issue, a …

Contributors
Li, Yang, Chen, Julian Jl, Yan, Hao, et al.
Created Date
2011

The F1Fo ATP synthase is required for energy conversion in almost all living organisms. The F1 complex is a molecular motor that uses ATP hydrolysis to drive rotation of the γ–subunit. It has not been previously possible to resolve the speed and position of the γ–subunit of the F1–ATPase as it rotates during a power stroke. The single molecule experiments presented here measured light scattered from 45X91 nm gold nanorods attached to the γ–subunit that provide an unprecedented 5 μs resolution of rotational position as a function of time. The product of velocity and drag, which were both measured directly, …

Contributors
Martin Ii, James Leo, Frasch, Wayne D, Chandler, Douglas, et al.
Created Date
2012