Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Redox enzymes represent a big group of proteins and they serve as catalysts for biological processes that involve electron transfer. These proteins contain a redox center that determines their functional properties, and hence, altering this center or incorporating non-biological redox cofactor to proteins has been used as a means to generate redox proteins with desirable activities for biological and chemical applications. Porphyrins and Fe-S clusters are among the most common cofactors that biology employs for electron transfer processes and there have been many studies on potential activities that they offer in redox reactions. In this dissertation, redox activity of Fe-S …

Bahrami Dizicheh, Zahra, Ghirlanda, Giovanna, Allen, James P, et al.
Created Date