Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this …

Contributors
Marsh, William, Stabenfeldt, Sarah, Caplan, Michael, et al.
Created Date
2013

Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods have three main problems: they are time consuming, typically not field-portable, and expensive. My research goal is to develop rapid, field-portable and cost sensitive diagnostic methods for RNA viruses. Herein, two different approaches to detect RNA viruses were proposed: Conjugated gold nanoparticles for detection of viral particles or virus-specific antibodies by monitoring changes in their optical properties, and Tentacle Probes …

Contributors
Franco, Lina Stella, Mujica, Vladimiro, Blattman, Joseph N, et al.
Created Date
2016

Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane proteins from the cell membranes, which is difficult and often lead to the loss of their native structures and functions. In this thesis, novel detection methods for in situ quantification of molecular interactions with membrane proteins are described. First, a label-free surface plasmon resonance imaging (SPRi) platform is developed for …

Contributors
Zhang, Fenni, Tao, Nongjian, Chae, Junseok, et al.
Created Date
2018