Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Phenotypic and molecular profiling demonstrates a high degree of heterogeneity in the breast tumors. TP53 tumor suppressor is mutated in 30% of all breast tumors and the mutation frequency in basal-like subtype is as high as 80% and co-exists with several other somatic mutations in different genes. It was hypothesized that tumor heterogeneity is a result of a combination of neo-morphic functions of specific TP53 driver mutations and distinct co-mutations or the co-drivers for each type of TP53 mutation. The 10 most common p53 missense mutant proteins found in breast cancer patients were ectopically expressed in normal-like mammary epithelial cells …

Contributors
Pal, Anasuya, LaBaer, Joshua, Roberson, Robert, et al.
Created Date
2019

The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp. PCC 6803 that exhibit a range of expression levels of the main proteins present in PSI (Chapter 2). One hypothesis was that the higher abundance of PSI in this organism is used to enable more cyclic electron flow (CEF) around PSI to contribute to greater ATP synthesis. Results of this …

Contributors
Moore, Vicki, Vermaas, Willem, Wang, Xuan, et al.
Created Date
2017

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the …

Contributors
Paul, Robin, Fromme, Petra, Ros, Alexandra, et al.
Created Date
2014