Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers and is quite polydisperse in solution, making elucidation of its self-association pathway challenging. This polydispersity also makes interpretation of traditional biochemical approaches difficult, prompting use of a fluorescence-based technique (Fluorescence Correlation Spectroscopy) to investigate the relationship between quaternary structure and function. Like cotton β Rca, tobacco β Rca appears to …

Serban, Andrew J, Wachter, Rebekka M, Levitus, Marcia, et al.
Created Date

Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial …

Flory, Justin, Fromme, Petra, Yan, Hao, et al.
Created Date