Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN, in which domain A binding activity is abolished by four mutations; with comparisons made to CVN<super>mutDB</super>, in which domain B binding activity is abolished. Using Monte Carlo calculations and docking simulations, mutations in CVN<super>mutDB</super> were considered singularly, and the mutations E41A/G and T57A were found to impact the affinity towards …

Contributors
Woodrum, Brian William, Ghirlanda, Giovanna, Redding, Kevin, et al.
Created Date
2014

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Man&alpha;1-2Man&alpha; motifs on the branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Man&alpha;1-2Man&alpha; and also inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Man&alpha;1-2Man&alpha; makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of this project is …

Contributors
Ruben, Melissa, Ghirlanda, Giovanna, Allen, James, et al.
Created Date
2013