Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The linear chromosomes ends in eukaryotes are protected by telomeres, a nucleoprotein structure that contains telomeric DNA with repetitive sequence and associated proteins. Telomerase is an RNA-dependent DNA polymerase that adds telomeric DNA repeats to the 3'-ends of chromosomes to offset the loss of terminal DNA repeats during DNA replication. It consists of two core components: a telomerase reverse transcriptase (TERT) and a telomerase RNA (TR). Telomerase uses a short sequence in its integral RNA component as template to add multiple DNA repeats in a processive manner. However, it remains unclear how the telomerase utilizes the short RNA template accurately …

Contributors
Chen, Yinnan, Chen, Julian J-L, Jones, Anne K, et al.
Created Date
2018

In my thesis, I characterize multi-nuclear manganese cofactors in modified reaction centers from the bacterium Rhodobacter sphaeroides. I characterized interactions between a variety of secondary electron donors and modified reaction centers. In Chapter 1, I provide the research aims, background, and a summary of the chapters in my thesis. In Chapter 2 and Chapter 3, I present my work with artificial four-helix bundles as secondary electron donors to modified bacterial reaction centers. In Chapter 2, I characterize the binding and energetics of the P1 Mn-protein, as a secondary electron donor to modified reaction centers. In Chapter 3, I present the …

Contributors
Espiritu, Eduardo, Allen, James P, Jones, Anne K, et al.
Created Date
2019

Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and smn2, that are identical with the exception of a C to T conversion in exon 7 of the smn2 gene. SMA patients lacking the smn1 gene, rely on smn2 for production of SMN. Due to an alternative splicing event, smn2 primarily encodes a non-functional SMN lacking exon 7 (SMN D7) …

Contributors
Niday, Tracy Christina, Allen, James P, Wachter, Rebekka, et al.
Created Date
2012

Redox enzymes represent a big group of proteins and they serve as catalysts for biological processes that involve electron transfer. These proteins contain a redox center that determines their functional properties, and hence, altering this center or incorporating non-biological redox cofactor to proteins has been used as a means to generate redox proteins with desirable activities for biological and chemical applications. Porphyrins and Fe-S clusters are among the most common cofactors that biology employs for electron transfer processes and there have been many studies on potential activities that they offer in redox reactions. In this dissertation, redox activity of Fe-S …

Contributors
Bahrami Dizicheh, Zahra, Ghirlanda, Giovanna, Allen, James P, et al.
Created Date
2019

Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties of the proteins derived from GFP allows increased complexity of experiments and consequently, information content of the data acquired. The importance of arginine-96 in GFP has been widely discussed. It has been established as vital to the kinetics of chromophore maturation and to the overall fold of GFP before post-translational …

Contributors
Watkins, Jennifer L., Wachter, Rebekka M, Ghirlanda, Giovanna, et al.
Created Date
2012

The evolution of photosynthesis caused the oxygen-rich atmosphere in which we thrive today. Although the reaction centers involved in oxygenic photosynthesis probably evolved from a protein like the reaction centers in modern anoxygenic photosynthesis, modern anoxygenic reaction centers are poorly understood. One such anaerobic reaction center is found in Heliobacterium modesticaldum. Here, the photosynthetic properties of H. modesticaldum are investigated, especially as they pertain to its unique photochemical reaction center. The first part of this dissertation describes the optimization of the previously established protocol for the H. modesticaldum reaction center isolation. Subsequently, electron transfer is characterized by ultrafast spectroscopy; the …

Contributors
Gisriel, Christopher James, Redding, Kevin E, Jones, Anne K, et al.
Created Date
2017

Protein crystallization has become an extremely important tool in biochemistry since the first structure of the protein Myoglobin was solved in 1958. Survival of motor neuron protein has proved to be an elusive target in regards to producing crystals of sufficient quality for X-ray diffraction. One form of Survival of motor neuron protein has been found to be a cause of the disease Spinal Muscular Atrophy that currently affects 1 in 6000 live births. The production, purification and crystallization of Survival of motor neuron protein are detailed. The Fenna-Matthews-Olson (FMO) protein from Pelodictyon phaeum is responsible for the transfer of …

Contributors
Larson, Chadwick Robert, Allen, James P, Francisco, Wilson, et al.
Created Date
2010

The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties are at the forefront of organic solar energy conversion research. In the work presented herein, porphyrin and organometallic dyes with widely-varied properties were studied for solar energy applications. In one project, porphyrins and porphyrin-fullerene dyads with aniline-like features were polymerized via electrochemical methods into semiconductive thin films. These were shown …

Contributors
Brennan, Bradley, Gust, Devens, Moore, Thomas A, et al.
Created Date
2012