Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Study of canine cancer’s molecular underpinnings holds great potential for informing veterinary and human oncology. Sporadic canine cancers are highly abundant (~4 million diagnoses/year in the United States) and the dog’s unique genomic architecture due to selective inbreeding, alongside the high similarity between dog and human genomes both confer power for improving understanding of cancer genes. However, characterization of canine cancer genome landscapes has been limited. It is hindered by lack of canine-specific tools and resources. To enable robust and reproducible comparative genomic analysis of canine cancers, I have developed a workflow for somatic and germline variant calling in canine ...

Contributors
Sivaprakasam, Karthigayini, Dinu, Valentin, Trent, Jeffrey, et al.
Created Date
2018

The past decade has seen a drastic increase in collaboration between Computer Science (CS) and Molecular Biology (MB). Current foci in CS such as deep learning require very large amounts of data, and MB research can often be rapidly advanced by analysis and models from CS. One of the places where CS could aid MB is during analysis of sequences to find binding sites, prediction of folding patterns of proteins. Maintenance and replication of stem-like cells is possible for long terms as well as differentiation of these cells into various tissue types. These behaviors are possible by controlling the expression ...

Contributors
Balachandran, Parithi, Wang, Xiao, Brafman, David, et al.
Created Date
2017

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or ...

Contributors
Underwood, Avery, Wilson, Melissa, Buetow, Kenneth, et al.
Created Date
2019

Parkinson's disease, the most prevalent movement disorder of the central nervous system, is a chronic condition that affects more than 1000,000 U.S. residents and about 3% of the population over the age of 65. The characteristic symptoms include tremors, bradykinesia, rigidity and impaired postural stability. Current therapy based on augmentation or replacement of dopamine is designed to improve patients' motor performance but often leads to levodopa-induced complications, such as dyskinesia and motor fluctuation. With the disease progress, clinicians must closely monitor patients' progress in order to identify any complications or decline in motor function as soon as possible in PD ...

Contributors
Pan, Di, Petitti, Diana, Greenes, Robert, et al.
Created Date
2013

Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three enddiastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia ...

Contributors
Shin, Jae Yul, Liang, Jianming, Maciejewski, Ross, et al.
Created Date
2016

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our ...

Contributors
Kukreja, Muskan, Johnston, Stephen Albert, Stafford, Phillip, et al.
Created Date
2012

Peptide microarrays are to proteomics as sequencing is to genomics. As microarrays become more content-rich, higher resolution proteomic studies will parallel deep sequencing of nucleic acids. Antigen-antibody interactions can be studied at a much higher resolution using microarrays than was possible only a decade ago. My dissertation focuses on testing the feasibility of using either the Immunosignature platform, based on non-natural peptide sequences, or a pathogen peptide microarray, which uses bioinformatically-selected peptides from pathogens for creating sensitive diagnostics. Both diagnostic applications use relatively little serum from infected individuals, but each approaches diagnosis of disease differently. The first project compares pathogen ...

Contributors
Navalkar, Krupa Arun, Johnston, Stephen A, Stafford, Phillip, et al.
Created Date
2014

Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work ...

Contributors
Lee, Jang, Gonzalez, Graciela, Ye, Jieping, et al.
Created Date
2011

Biochemical reactions underlie all living processes. Their complex web of interactions is difficult to fully capture and quantify with simple mathematical objects. Applying network science to biology has advanced our understanding of the metabolisms of individual organisms and the organization of ecosystems, but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, I constructed biochemical networks using global databases of annotated genomes and metagenomes, and biochemical reactions. I uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical ...

Contributors
Smith, Harrison Brodsky, Walker, Sara I, Anbar, Ariel D, et al.
Created Date
2018

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this thesis, an advanced signal processing method is proposed to estimate epitope antigen subsequences as well as identify mimotope antigen subsequences that mimic the structure of epitopes from random-sequence peptide microarrays. The method first maps peptide sequences to linear expansions of highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency processing technique to detect recurring patterns in subsequences. This technique is matched ...

Contributors
O'Donnell, Brian Nickerson, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2014