Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed turns. Almost all DNA dependent cellular processes, such as DNA duplication, transcription, DNA repair and recombination, take place in the chromatin form. Based on the critical importance of appropriate chromatin condensation, this thesis focused on the folding behavior of the nucleosome array reconstituted using different templates with various controllable factors …

Contributors
Fu, Qiang, Lindsay, Stuart M, Yan, Hao, et al.
Created Date
2010

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are …

Contributors
Pal, Suchetan, Liu, Yan, Yan, Hao, et al.
Created Date
2012

The F1Fo ATP synthase is required for energy conversion in almost all living organisms. The F1 complex is a molecular motor that uses ATP hydrolysis to drive rotation of the γ–subunit. It has not been previously possible to resolve the speed and position of the γ–subunit of the F1–ATPase as it rotates during a power stroke. The single molecule experiments presented here measured light scattered from 45X91 nm gold nanorods attached to the γ–subunit that provide an unprecedented 5 μs resolution of rotational position as a function of time. The product of velocity and drag, which were both measured directly, …

Contributors
Martin Ii, James Leo, Frasch, Wayne D, Chandler, Douglas, et al.
Created Date
2012

Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial …

Contributors
Flory, Justin, Fromme, Petra, Yan, Hao, et al.
Created Date
2014

Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the biological activity. DNA sliding clamps are a family of proteins with known crystal structures. These clamps encircle the DNA and enable other proteins to interact more efficiently with the DNA. Eukaryotic PCNA and prokaryotic β clamp are two of these clamps, some of the most stable homo-oligomers known. However, their …

Contributors
Ranjit, Suman, Levitus, Marcia, Lindsay, Stuart, et al.
Created Date
2013

Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule differentiation and DNA translocation control are the two main challenges in all single molecule DNA sequencing methods. In this thesis, I will first introduce DNA sequencing technology development and its application, and then explain the performance and limitation of prior art in detail. Following that, I will show a single molecule DNA base differentiation result obtained in recognition tunneling experiments. …

Contributors
Liu, Hao, Lindsay, Stuart M, Lindsay, Stuart M, et al.
Created Date
2013