Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using inorganic materials in an effort to improve membrane stability and for application to novel biosensing platforms. Published literature has shown that a variety of dense inorganic materials with various surface properties have been investigated for the study of biomimetic membranes. However, literature does not adequately address the effect of porous …

Contributors
Eggen, Carrie Lynn, Lin, Jerry Y.S., Dai, Lenore, et al.
Created Date
2011

All organisms need to be able to sense and respond to their environment. Much of this process takes place via proteins embedded in the cell membrane, the border between a living thing and the external world. Transient receptor potential (TRP) ion channels are a superfamily of membrane proteins that play diverse roles in physiology. Among the 27 TRP channels found in humans and other animals, TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1) are the primary sensors of cold and hot temperatures, respectively. They underlie the molecular basis of somatic temperature sensation, but beyond this are also known to …

Contributors
Hilton, Jacob, Van Horn, Wade D, Levitus, Marcia, et al.
Created Date
2019

Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN, in which domain A binding activity is abolished by four mutations; with comparisons made to CVN<super>mutDB</super>, in which domain B binding activity is abolished. Using Monte Carlo calculations and docking simulations, mutations in CVN<super>mutDB</super> were considered singularly, and the mutations E41A/G and T57A were found to impact the affinity towards …

Contributors
Woodrum, Brian William, Ghirlanda, Giovanna, Redding, Kevin, et al.
Created Date
2014

DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with …

Contributors
SEN, SUMAN, Lindsay, Stuart, Zhang, Peiming, et al.
Created Date
2016

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 …

Contributors
Morgan, Ashli, Wang, Xu, Allen, James, et al.
Created Date
2015

Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a “diffract and destroy” …

Contributors
James, Daniel, Spence, John, Weierstall, Uwe, et al.
Created Date
2015

Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also …

Contributors
Cope, Stephanie M., Vaiana, Sara M, Ghirlanda, Giovanna, et al.
Created Date
2013

In disordered soft matter system, amorphous and crystalline components might be coexisted. The interaction between the two distinct structures and the correlation within the crystalline components are crucial to the macroscopic property of the such material. The spider dragline silk biopolymer, is one of such soft matter material that exhibits exceptional mechanical strength though its mass density is considerably small compare to structural metal. Through wide-angle X-ray scattering (WAXS), the research community learned that the silk fiber is mainly composed of amorphous backbone and $\beta$-sheet nano-crystals. However, the morphology of the crystalline system within the fiber is still not clear. …

Contributors
Mou, Qiushi, Yarger, Jeffery, Benmore, Chris, et al.
Created Date
2015

Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the effects of changing the terminal base pair were explored using temperature-dependent quantum yields. It was discovered, in combination with simulations, that a terminal thymine base has the weakest stacking interactions with the Cy3 dye compared to the other three bases. With ME1 heterodimers, the goal was to see if engineering a salt …

Contributors
Binder, Jennifer K., Levitus, Marcia, Wachter, Rebekka, et al.
Created Date
2015

Ribulose-1, 5-bisphosphate carboxylase oxygenase, commonly known as RuBisCO, is an enzyme involved in carbon fixation in photosynthetic organisms. The enzyme is subject to a mechanism-based deactivation during its catalytic cycle. RuBisCO activase (Rca), an ancillary enzyme belonging to the AAA+ family of the ATP-ases, rescues RuBisCO by facilitating the removal of the tightly bound sugar phosphates from the active sites of RuBisCO. In this work, we investigated the ATP/ADP dependent oligomerization equilibrium of fluorescently tagged Rca for a wide range of concentrations using fluorescence correlation spectroscopy. Results show that in the presence of ADP-Mg2+, the oligomerization state of Rca gradually …

Contributors
Chakraborty, Manas, Levitus, Marcia, Angell, Charles, et al.
Created Date
2014