Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2010 2019


In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and …

Contributors
Thangaraj, Balakumar, Fromme, Petra, Shock, Everett, et al.
Created Date
2010

Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of …

Contributors
Emery, Jack Scott, Pizziconi, Vincent B, Woodbury, Neal W, et al.
Created Date
2010

In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed turns. Almost all DNA dependent cellular processes, such as DNA duplication, transcription, DNA repair and recombination, take place in the chromatin form. Based on the critical importance of appropriate chromatin condensation, this thesis focused on the folding behavior of the nucleosome array reconstituted using different templates with various controllable factors …

Contributors
Fu, Qiang, Lindsay, Stuart M, Yan, Hao, et al.
Created Date
2010

This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology. The topics covered throughout this dissertation require a background in eukaryotic cell physiology, viscoelasticity, and processes of embryonic tissue morphogenesis. Following a brief background on these topics, I present an overview of the Subcellular Element Model (ScEM). This is a modeling framework which allows one to compute the dynamics of …

Contributors
Sandersius, Sebastian Ambrose, Newman, Timothy J, Rez, Peter, et al.
Created Date
2011

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to …

Contributors
Huang, Shuo, Lindsay, Stuart, Sankey, Otto, et al.
Created Date
2011

ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP synthase has successfully been expressed in Escherichia coli and purified in mg quantities by incorporating a unique combination of methods. Expression was accomplished using a codon optimized gene for the c-subunit, and it was expressed as an attachment to the larger, more soluble, native maltose binding protein (MBP-c1). The fusion protein …

Contributors
Lawrence, Robert Michael, Fromme, Petra, Chen, Julian J.L., et al.
Created Date
2011

Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using inorganic materials in an effort to improve membrane stability and for application to novel biosensing platforms. Published literature has shown that a variety of dense inorganic materials with various surface properties have been investigated for the study of biomimetic membranes. However, literature does not adequately address the effect of porous …

Contributors
Eggen, Carrie Lynn, Lin, Jerry Y.S., Dai, Lenore, et al.
Created Date
2011

Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only a hundred …

Contributors
Hunter, Mark S., Fromme, Petra, Wolf, George, et al.
Created Date
2011

Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of contacts and the role of correlated motions in directing the motions of the system. In this thesis, I use molecular dynamics simulations to provide molecular mechanisms that rationalize structural, thermodynamic, and mutation data on the interactions between the lac repressor headpiece and its O1 operator DNA as well as the …

Contributors
Barr, Daniel, Van Der Vaart, Arjan, Matyushov, Dmitry, et al.
Created Date
2011

Conformational changes in biomolecules often take place on longer timescales than are easily accessible with unbiased molecular dynamics simulations, necessitating the use of enhanced sampling techniques, such as adaptive umbrella sampling. In this technique, the conformational free energy is calculated in terms of a designated set of reaction coordinates. At the same time, estimates of this free energy are subtracted from the potential energy in order to remove free energy barriers and cause conformational changes to take place more rapidly. This dissertation presents applications of adaptive umbrella sampling to a variety of biomolecular systems. The first study investigated the effects …

Contributors
Spiriti, Justin Matthew, Van Der Vaart, Arjan, Chizmeshya, Andrew, et al.
Created Date
2011