Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds is the focus of the work described in this thesis. Bleomycins (BLMs) are a class of water soluble, glycopeptide-derived antitumor antibiotics consisting of a structurally complicated unnatural hexapeptide and a disaccharide, clinically used as an anticancer chemotherapeutic agent at an exceptionally low therapeutic dose. The efficiency of BLM is likely …

Contributors
Bhattacharya, Chandrabali, Hecht, Sidney M, Moore, Ana, et al.
Created Date
2014

Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron transport system consumes nearly 90% of the oxygen used by the cell. Reactive oxygen species (ROS) in the form of superoxide anions (O2*-) are generated as byproduct of cellular metabolism due to leakage of electrons from complex I and complex III to oxygen. Under normal conditions, the effects of ROS …

Contributors
Alam, Mohammad Parvez, Hecht, Sidney M, Gould, Ian R, et al.
Created Date
2014

Mitochondria are energy-producing organelles present in eukaryotic cells. Energy as adenosine triphosphate (ATP) is produced at the end of a series of electron transfers called the electron transport chain (ETC). Such a highly coordinated and regulated series of electron transfer reactions give rise to a small percentage of electron leakage which, by the subsequent reduction of molecular oxygen, produce superoxide anions (O2.-). These anions initiate the production of additional highly reactive oxygen-containing radicals commonly known as reactive oxygen species (ROS). Although cells are equipped with endogenous antioxidant systems to minimize ROS accumulation, these endogenous defense systems become inadequate when ROS …

Contributors
Bandyopadhyay, Indrajit, Hecht, Sidney M, Gould, Ian R, et al.
Created Date
2019

Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described. The bleomycins (BLMs) are a group of glycopeptide antibiotics that have been used clinically to treat several types of cancers. The antitumor activity of BLM is thought to be related to its degradation of DNA, and possibly RNA. Previous studies have indicated that the methylvalerate subunit of bleomycin plays an important role …

Contributors
Cai, Xiaoqing, Hecht, Sidney M, Gould, Ian R, et al.
Created Date
2011