Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two burning chambers with the initial temperature as the main factor. The obtained temperature distribution profiles are studied and it is observed that the gel behaves very close to the theoretical prediction under heat. The carbon residue with Al2O3 is then processed for twelve hours and then analyzed to obtain the …

Contributors
Sagi, Varun Bangar Raju, Lee, Taewoo, Phelan, Patrick, et al.
Created Date
2010

In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed turns. Almost all DNA dependent cellular processes, such as DNA duplication, transcription, DNA repair and recombination, take place in the chromatin form. Based on the critical importance of appropriate chromatin condensation, this thesis focused on the folding behavior of the nucleosome array reconstituted using different templates with various controllable factors …

Contributors
Fu, Qiang, Lindsay, Stuart M, Yan, Hao, et al.
Created Date
2010

A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and a high binding affinity to about six equivalents of Cu2+. The goal of this study is to investigate the Cu2+ binding sites in SmbP and to understand how Cu2+ stabilizes the protein. Preliminary folding experiments indicated that Cu2+ greatly stabilizes SmbP. In this study, protein folding data from circular dichroism …

Contributors
Yan, Qin, Francisco, Wilson A, Allen, James, et al.
Created Date
2010

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the …

Contributors
Engstrom, Erika Lyn, Friesen, Cody, Buttry, Daniel, et al.
Created Date
2011

The purpose of this study was to analyze the impact of a context-based teaching approach (STS) versus a more traditional textbook approach on the attitudes and achievement of community college chemistry students. In studying attitudes toward chemistry within this study, I used a 30-item Likert scale in order to study the importance of chemistry in students' lives, the importance of chemistry, the difficulty of chemistry, interest in chemistry, and the usefulness of chemistry for their future career. Though the STS approach students had higher attitude post scores, there was no significant difference between the STS and textbook students' attitude post …

Contributors
Perkins, Gita, Baker, Dale R, Sloane, Finbarr, et al.
Created Date
2011

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly …

Contributors
Zeller, Robert August, Friesen, Cody, Sieradzki, Karl, et al.
Created Date
2011

A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors of DNA and RNA. Threose nucleic acid (TNA) is capable of forming stable helical structures with complementary strands of itself and RNA. This provides a plausible mechanism for genetic information transfer between TNA and RNA. Therefore TNA has been proposed as a potential RNA progenitor. Using molecular evolution, functional sequences …

Contributors
Zhang, Su, Chaut, John C, Ghirlanda, Giovanna, et al.
Created Date
2011

Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for improved detection and monitoring. Some fundamental aspects of two of these techniques, isoelectric focusing and dielectrophoresis, are examined and novel developments are presented. A reproducible and automatable method for coupling capillary isoelectric focusing (cIEF) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) based on syringe pump mobilization is found. Results show high resolution is maintained during mobilization and &beta-lactoglobulin; protein …

Contributors
Weiss, Noah, Hayes, Mark A, Garcia, Antonio, et al.
Created Date
2011

ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a variety of DNA nanostructures, which can be organized into both discrete and periodic structures. This dissertation focuses on studying the dynamic behavior of DNA nanostructure recognition processes. The thermodynamics and kinetics of nanostructure binding are evaluated, with the intention of improving our ability to understand and control their assembly. Presented …

Contributors
Nangreave, Jeanette Kim, Yan, Hao, Liu, Yan, et al.
Created Date
2011

The work described in the thesis involves the synthesis of a molecular triad which is designed to undergo proton coupled electron transfer (PCET) upon irradiation with light. Photoinduced PCET is an important process that many organisms use and the elucidation of its mechanism will allow further understanding of this process and its potential applications. The target compound designed for PCET studies consists of a porphyrin chromophore (also a primary electron donor), covalently linked to a phenol-imidazole (secondary electron donor), and a C60 (primary electron acceptor). The phenol-imidazole moiety of this system is modeled after the TyrZ His-190 residues in the …

Contributors
Patterson, Dustin Day, Moore, Ana L, Gust, Devens, et al.
Created Date
2011