Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Ultrasonication-mediated liquid-phase exfoliation has emerged as an efficient method for producing large quantities of two-dimensional materials such as graphene, boron nitride, and transition metal dichalcogenides. This thesis explores the use of this process to produce a new class of boron-rich, two-dimensional materials, namely metal diborides, and investigate their properties using bulk and nanoscale characterization methods. Metal diborides are a class of structurally related materials that contain hexagonal sheets of boron separated by metal atoms with applications in superconductivity, composites, ultra-high temperature ceramics and catalysis. To demonstrate the utility of these materials, chromium diboride was incorporated in polyvinyl alcohol as a …

Contributors
Yousaf, Ahmed, Green, Alexander A, Wang, Qing Hua, et al.
Created Date
2018

The increasing pervasiveness of infections caused by multidrug-resistant bacteria (MDR) is a major global health issue that has been further exacerbated by the dearth of antibiotics developed over the past 40 years. Drug-resistant bacteria have led to significant morbidity and mortality, and ever-increasing antibiotic resistance threatens to reverse many of the medical advances enabled by antibiotics over the last 40 years. The traditional strategy for combating these superbugs involves the development of new antibiotics. Yet, only two new classes of antibiotics have been introduced to the clinic over the past two decades, and both failed to combat broad spectrum gram-negative …

Contributors
Debnath, Abhishek, Green, Alexander A, Liu, Yan, et al.
Created Date
2019