Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
Subject
Date Range
2010 2019


An evolving understanding of elastomeric polymer nanocomposites continues to expand commercial, defense, and industrial products and applications. This work explores the thermomechanical properties of elastomeric nanocomposites prepared from bisphenol A diglycidyl ether (BADGE) and three amine-terminated poly(propylene oxides) (Jeffamines). The Jeffamines investigated include difunctional crosslinkers with molecular weights of 2,000 and 4,000 g/mol and a trifunctional crosslinker with a molecular weight of 3,000 g/mol. Additionally, carbon nanotubes (CNTs) were added, up to 1.25 wt%, to each thermoset. The findings indicate that the Tg and storage modulus of the polymer nanocomposites can be controlled independently within narrow concentration windows, and that …

Contributors
WANG, MENG, Green, Matthew D, Green, Alexander, et al.
Created Date
2019

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected crystal sample, requiring a large quantity (up to grams) of crystal sample to solve a protein structure. Furthermore, mix-and-inject serial crystallography (MISC) at XFEL facilities requires fast mixing for short (millisecond) reaction time points (𝑡"), and current sample delivery methods have complex fabrication and assembly requirements. To reduce sample consumption …

Contributors
Echelmeier, Austin, Ros, Alexandra, Levitus, Marcia, et al.
Created Date
2019

Air pollution has been linked to various health problems but how different air pollutants and exposure levels contribute to those diseases remain largely unknown. Researchers have mainly relied on data from government air monitoring stations to study the health effects of air pollution exposure. The limited information provided by sparse stations has low spatial and temporal resolution, which is not able to represent the actual exposure of individuals. A tool that can accurately monitor personal exposure provides valuable data for epidemiologists to understand the relationship between air pollution and certain diseases. It also allows individuals to be aware of any …

Contributors
Lin, Chenwen, Tao, Nongjian, Borges, Chad R, et al.
Created Date
2019

Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20 zeolite framework types have been synthesized in the form of nanocrystallites and their scalable synthesis has yet to be developed and understood. Geopolymers, claimed to be “amorphous cousins of zeolites”, are a class of ceramic-like aluminosilicate materials with prominent application in construction due to their unique chemical and mechanical properties. Despite the monolith form, geopolymers are fundamentally nanostructured materials and contain zeolite nanocrystallites. Herein, a new cost-effective and scalable synthesis of …

Contributors
Chen, Shaojiang, Seo, Dong Kyun, Trovitch, Ryan, et al.
Created Date
2019

Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the mainstream technologies scale down with the size of the molecule. To address this problem, two different optical detection methods, charge sensitive optical detection (CSOD) and virion/nano-oscillators, are developed to measure the binding-induced charge change instead of the mass change, which enables quantification of the binding kinetics for both large and small molecules. In particular, the nano-oscillator approach provides a unique …

Contributors
Ma, Guangzhong, Tao, Nongjian, Wang, Shaopeng, et al.
Created Date
2019

Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied in the production of green fuels. The first project of this dissertation aimed at developing a controllable strategy to incorporate domains with different functions (e. g. catalytic sites, electron transfer modules, light absorbing subunits) into a single multicomponent system. This was accomplished through the rational design of 2,2’-bipyridine modified dimeric …

Contributors
Alcala-Torano, Rafael de Jesus, Ghirlanda, Giovanna, Moore, Ana L, et al.
Created Date
2019

The increasing pervasiveness of infections caused by multidrug-resistant bacteria (MDR) is a major global health issue that has been further exacerbated by the dearth of antibiotics developed over the past 40 years. Drug-resistant bacteria have led to significant morbidity and mortality, and ever-increasing antibiotic resistance threatens to reverse many of the medical advances enabled by antibiotics over the last 40 years. The traditional strategy for combating these superbugs involves the development of new antibiotics. Yet, only two new classes of antibiotics have been introduced to the clinic over the past two decades, and both failed to combat broad spectrum gram-negative …

Contributors
Debnath, Abhishek, Green, Alexander A, Liu, Yan, et al.
Created Date
2019

The fuel cell is a promising device that converts the chemical energy directly into the electrical energy without combustion process. However, the slow reaction rate of the oxygen reduction reaction (ORR) necessitates the development of cathode catalysts for low-temperature fuel cells. After a thorough literature review in Chapter 1, the thesis is divided into three parts as given below in Chapters 2-4. Chapter 2 describes the study on the Pt and Pt-Me (Me: Co, Ni) alloy nanoparticles supported on the pyrolyzed zeolitic imidazolate framework (ZIF) towards ORR. The Co-ZIF and NiCo-ZIF were synthesized by the solvothermal method and then mixed …

Contributors
Shi, Xuan, Kannan, Arunachalanadar Mada, Liu, Jingyue, et al.
Created Date
2019

This study aims to address the deficiencies of the Marcus model of electron transfer (ET) and then provide modifications to the model. A confirmation of the inverted energy gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes. In addition to the macroscopic properties of the solvent, the physical properties of the solvent are incorporated in the model via the microscopic solvation model. For the molecules studied in this dissertation, the rate constant first increases with cooling, in contrast to the prediction of the Arrhenius law, and then decreases at lower temperatures. Additionally, the polarizability of …

Contributors
Waskasi, Morteza, Matyushov, Dmitry, Richert, Ranko, et al.
Created Date
2019

Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from biomass burning, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass versus entrained soil as a source of trace metals in burn aerosols, small-scale burn experiments were conducted using soil-free foliage representative of …

Contributors
Sherry, Alyssa Meredith, Anbar, Ariel D, Herckes, Pierre, et al.
Created Date
2019