Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Palladium metal in its various forms has been heavily studied for many catalytic, hydrogen storage and sensing applications and as an electrocatalyst in fuel cells. A short review on various applications of palladium and the mechanism of Pd nanoparticles synthesis will be discussed in chapter 1. Size dependent properties of various metal nanoparticles and a thermodynamic theory proposed by Plieth to predict size dependent redox properties of metal nanoparticles will also be discussed in chapter 1. To evaluate size dependent stability of metal nanoparticles using electrochemical techniques in aqueous media, a synthetic route was designed to produce water soluble Pd …

Kumar, Ashok, Buttry, Daniel A., Gould, Ian R., et al.
Created Date