Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

DNA and DNA nanoassemblies such as DNA origamis have large potential in biosensing, drug delivery, nanoelectronic circuits, and biological computing requiring suitable methods for migration and precise positioning. Insulator-based dielectrophoresis (iDEP) provides an efficient and matrix-free approach for manipulation of micro-and nanometer-sized objects. In order to exploit iDEP for naturally formed DNA and DNA nanoassemblies, a detailed understanding of the underlying polarization and dielectrophoretic migration is essential. The shape and the counterion distribution are considered two essential factors in the polarization mechanism. Here, the dielectrophoretic behavior of 6-helix bundle (6HxB) and triangle DNA origamis with identical sequences but substantial topological …

Gan, Lin, Ros, Alexandra, Buttry, Daniel, et al.
Created Date