Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Masters Thesis
Subject
Date Range
2010 2019


Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from biomass burning, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass versus entrained soil as a source of trace metals in burn aerosols, small-scale burn experiments were conducted using soil-free foliage representative of …

Contributors
Sherry, Alyssa Meredith, Anbar, Ariel D, Herckes, Pierre, et al.
Created Date
2019

Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex angioarchitectures. The gold standard of commercially available LEAs is dissolved in dimethyl sulfoxide (DMSO), which has been associated with vasospasm and angiotoxicity. The aim of this study was to investigate amino acid substitution in an enzyme-degradable side group of an N-isopropylacrylamide (NIPAAm) copolymer for the development of a LEA that …

Contributors
Rosas Gomez, Karime Jocelyn, Vernon, Brent, Weaver, Jessica, et al.
Created Date
2019

In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide in the glass and UV absorbing additives in EVA to increase quantum efficiency of crystalline silicon solar cells in the UV regions. This new approach is expected to boost the initial power output of the modules and reduce the long-term encapsulant browning issues. However, this new approach could lead to other durability and reliability issues such as delamination of encapsulant …

Contributors
Arularasu, Pooja, Tamizhmani, Govindasamy, Mu, Bin, et al.
Created Date
2019

Banded iron formations (BIFs) are among the earliest possible indicators for oxidation of the Archean biosphere. However, the origin of BIFs remains debated. Proposed formation mechanisms include oxidation of Fe(II) by O2 (Cloud, 1973), photoferrotrophy (Konhauser et al., 2002), and abiotic UV photooxidation (Braterman et al., 1983; Konhauser et al., 2007). Resolving this debate could help determine whether BIFs are really indicators of O2, biological activity, or neither. To examine the viability of abiotic UV photooxidation of Fe, laboratory experiments were conducted in which Fe-bearing solutions were irradiated with different regions of the ultraviolet (UV) spectrum and Fe oxidation and …

Contributors
Castleberry, Parker, Anbar, Ariel D, Herckes, Pierre, et al.
Created Date
2017

In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of droplets in the microarray, a 100 μm thick oil layer (dodecane) was used to cover the chip surface. The interaction between BSA (Bovine serum albumin) and Anti-BSA was used to evaluate the capability of IMPDS. The alignment variability of printing, stability of droplets array and quantification of protein-protein interactions based …

Contributors
Xiao, Feng, Tao, Nongjian, Borges, Chad, et al.
Created Date
2017

The addition of aminoalkyl-substituted 2,6-bis(imino)pyridine (or pyridine diimine, PDI) ligands to [(COD)RhCl]2 (COD = 1,5-cyclooctadiene) resulted in the formation of rhodium monochloride complexes with the general formula (NPDI)RhCl (NPDI = iPr2NEtPDI or Me2NPrPDI). The investigation of (iPr2NEtPDI)RhCl and (Me2NPrPDI)RhCl by single crystal X-ray diffraction verified the absence of amine arm coordination and a pseudo square planar geometry about rhodium. Replacement of the chloride ligand with an outer-sphere anion was achieved by adding AgBF4 directly to (iPr2NEtPDI)RhCl to form [(iPr2NEtPDI)Rh][BF4]. Alternatively, this complex was prepared upon chelate addition following the salt metathesis reaction between AgBF4 and [(COD)RhCl]2. Using the latter method, …

Contributors
Levin, Hagit Ben-Daat, Trovitch, Ryan J, Gould, Ian R, et al.
Created Date
2016

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss …

Contributors
Chicca, Matthew, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2015

Natural variations in 238U/235U of marine carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~ 8.5 to study possible U isotope fractionation during incorporation into these minerals. Small but significant U isotope fractionation was observed in aragonite experiments at pH ~ 8.5, with heavier U in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007+0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. …

Contributors
Chen, Xinming, Anbar, Ariel, Herckes, Pierre, et al.
Created Date
2015

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on …

Contributors
Rose, Christy Joyce, Herckes, Pierre, Fraser, Matthew, et al.
Created Date
2014

We studied the relationship between the polarizability and the molecular conductance that arises in the response of a molecule to an external electric field. To illustrate the plausibility of the idea, we used Simmons' tunneling model, which describes image charge and dielectric effects on electron transport through a barrier. In such a model, the barrier height depends on the dielectric constant of the electrode-molecule-electrode junction, which in turn can be approximately expressed in terms of the molecular polarizability via the classical Clausius-Mossotti relation. In addition to using the tunneling model, the validity of the relationships between the molecular polarizability and …

Contributors
Vatan Meidanshahi, Reza, Mujica, Vladimiro, Chizmeshya, Andrew, et al.
Created Date
2014