Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery …

Contributors
Gunnam, Sridhar, LiKamWa, Robert, Turaga, Pavan, et al.
Created Date
2018

Visual applications – those that use camera frames as part of the application – provide a rich, context-aware experience. The continued development of mixed and augmented reality (MR/AR) computing environments furthers the richness of this experience by providing applications a continuous vision experience, where visual information continuously provides context for applications and the real world is augmented by the virtual. To understand user privacy concerns in continuous vision computing environments, this work studies three MR/AR applications (augmented markers, augmented faces, and text capture) to show that in a modern mobile system, the typical user is exposed to potential mass collection …

Contributors
Jensen, Jk, LiKamWa, Robert, Doupè, Adam, et al.
Created Date
2019

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs …

Contributors
Kodukula, Venkatesh, LiKamWa, Robert, Chakrabarti, Chaitali, et al.
Created Date
2019