Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




The information era has brought about many technological advancements in the past few decades, and that has led to an exponential increase in the creation of digital images and videos. Constantly, all digital images go through some image processing algorithm for various reasons like compression, transmission, storage, etc. There is data loss during this process which leaves us with a degraded image. Hence, to ensure minimal degradation of images, the requirement for quality assessment has become mandatory. Image Quality Assessment (IQA) has been researched and developed over the last several decades to predict the quality score in a manner that …

Contributors
Gunavelu Mohan, Aswin, Sohoni, Sohum, Ren, Fengbo, et al.
Created Date
2017

With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures. First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution …

Contributors
Lee, Shin-Ying, Wu, Carole-Jean, Chakrabarti, Chaitali, et al.
Created Date
2017

Caches pose a serious limitation in scaling many-core architectures since the demand of area and power for maintaining cache coherence increases rapidly with the number of cores. Scratch-Pad Memories (SPMs) provide a cheaper and lower power alternative that can be used to build a more scalable many-core architecture. The trade-off of substituting SPMs for caches is however that the data must be explicitly managed in software. Heap management on SPM poses a major challenge due to the highly dynamic nature of of heap data access. Most existing heap management techniques implement a software caching scheme on SPM, emulating the behavior …

Contributors
Lin, Jinn-Pean, Shrivastava, Aviral, Ren, Fengbo, et al.
Created Date
2017

Concurrency bugs are one of the most notorious software bugs and are very difficult to manifest. Significant work has been done on detection of atomicity violations bugs for high performance systems but there is not much work related to detect these bugs for embedded systems. Although criteria to claim existence of bugs remains same, approach changes a bit for embedded systems. The main focus of this research is to develop a systemic methodology to address the issue from embedded systems perspective. A framework is developed which predicts the access interleaving patterns that may violate atomicity using memory references of shared …

Contributors
Patel, Jay, Lee, Yann-Hang, Ren, Fengbo, et al.
Created Date
2016

Achieving human level intelligence is a long-term goal for many Artificial Intelligence (AI) researchers. Recent developments in combining deep learning and reinforcement learning helped us to move a step forward in achieving this goal. Reinforcement learning using a delayed reward mechanism is an approach to machine intelligence which studies decision making with control and how a decision making agent can learn to act optimally in an environment-unaware conditions. Q-learning is one of the model-free reinforcement directed learning strategies which uses temporal differences to estimate the performances of state-action pairs called Q values. A simple implementation of Q-learning algorithm can be …

Contributors
Gankidi, Pranay Reddy, Thangavelautham, Jekanthan, Ren, Fengbo, et al.
Created Date
2016

Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable of accelerating even non-parallel loops and loops with low trip-counts. One challenge in compiling for CGRAs is to manage both recurring and nonrecurring variables in the register file (RF) of the CGRA. Although prior works have managed recurring variables via rotating RF, they access the nonrecurring variables through either a global RF or from a constant memory. The former does not scale well, and the latter degrades the mapping quality. This work proposes a hardware-software codesign approach in order to manage all the variables in a local nonrotating RF. Hardware provides modulo …

Contributors
Dave, Shail, Shrivastava, Aviral, Ren, Fengbo, et al.
Created Date
2016

The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power hungry. As most of these mobile platforms are powered by batteries, energy efficiency has become one of the most critical aspects of such devices. Thus, the energy cost of the fundamental arithmetic operations executed in these applications has to be reduced. As voltage scaling has effectively ended, the energy efficiency of integrated circuits has ceased to improve within successive generations …

Contributors
Satapathy, Saktiswarup, Brunhaver, John, Clark, Lawrence T, et al.
Created Date
2016