Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Visual applications – those that use camera frames as part of the application – provide a rich, context-aware experience. The continued development of mixed and augmented reality (MR/AR) computing environments furthers the richness of this experience by providing applications a continuous vision experience, where visual information continuously provides context for applications and the real world is augmented by the virtual. To understand user privacy concerns in continuous vision computing environments, this work studies three MR/AR applications (augmented markers, augmented faces, and text capture) to show that in a modern mobile system, the typical user is exposed to potential mass collection …

Contributors
Jensen, Jk, LiKamWa, Robert, Doupè, Adam, et al.
Created Date
2019

Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install Global Positioning System(GPS) receivers and administrators must continuously monitor these devices. There have been some urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) Scalability: most of them only offer single-machine solution which is not adequate to produce large-scale …

Contributors
Fu, Zishan, Sarwat, Mohamed, Pedrielli, Giulia, et al.
Created Date
2019

Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition with early childhood onset, thus most research has focused on characterizing brain function in young individuals. Little is understood about brain function differences in middle age and older adults with ASD, despite evidence of persistent and worsening cognitive symptoms. Functional Magnetic Resonance Imaging (MRI) in younger persons with ASD demonstrate that large-scale brain networks containing the prefrontal cortex are affected. A novel, threshold-selection-free graph theory metric is proposed as a more robust and sensitive method for tracking brain aging in ASD and is compared against five well-accepted graph theoretical analysis methods …

Contributors
Catchings, Michael Thomas, Braden, Brittany B, Greger, Bradley, et al.
Created Date
2019

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving. One of the expectations from fully-automated vehicles is never to cause …

Contributors
Tuncali, Cumhur Erkan, Fainekos, Georgios, Ben Amor, Heni, et al.
Created Date
2019

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach. In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore and predict students’ …

Contributors
Tian, Wenbo, Hsiao, Ihan, Bazzi, Rida, et al.
Created Date
2019

The Internet of Things ecosystem has spawned a wide variety of embedded real-time systems that complicate the identification and resolution of bugs in software. The methods of concurrent checkpoint provide a means to monitor the application state with the ability to replay the execution on like hardware and software, without holding off and delaying the execution of application threads. In this thesis, it is accomplished by monitoring physical memory of the application using a soft-dirty page tracker and measuring the various types of overhead when employing concurrent checkpointing. The solution presented is an advancement of the Checkpoint and Replay In …

Contributors
Prinke, Michael L, Lee, Yann-Hang, Shrivastava, Aviral, et al.
Created Date
2018

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory …

Contributors
Ma, Yufei, Vrudhula, Sarma, Seo, Jae-sun, et al.
Created Date
2018

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and the number of safety-critical applications – application with unacceptable consequences of failure. Software-level error resilience schemes are attractive because they can provide commercial-off-the-shelf microprocessors with adaptive and scalable reliability. Among all software-level error resilience solutions, in-application instruction replication based approaches have been widely used and are deemed to be the most effective. However, existing instruction-based replication schemes only protect some part of computations i.e. arithmetic and logical instructions and leave …

Contributors
Didehban, Moslem, Shrivastava, Aviral, Wu, Carole-Jean, et al.
Created Date
2018

Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. …

Contributors
Kolala Venkataramanaiah, Shreyas, Seo, Jae-sun, chakrabarti, Chaitali, et al.
Created Date
2018

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures. Recently edge computing has emerged to reduce the negative impacts of tasks offloading to …

Contributors
Song, Yaozhong, Yau, Sik-Sang, Huang, Dijiang, et al.
Created Date
2018