Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well …

Contributors
Kia, Behnam, Ditto, William, Huang, Liang, et al.
Created Date
2011

Performance improvements have largely followed Moore's Law due to the help from technology scaling. In order to continue improving performance, power-efficiency must be reduced. Better technology has improved power-efficiency, but this has a limit. Multi-core architectures have been shown to be an additional aid to this crusade of increased power-efficiency. Accelerators are growing in popularity as the next means of achieving power-efficient performance. Accelerators such as Intel SSE are ideal, but prove difficult to program. FPGAs, on the other hand, are less efficient due to their fine-grained reconfigurability. A middle ground is found in CGRAs, which are highly power-efficient, but …

Contributors
Pager, Jared, Shrivastava, Aviral, Gupta, Sandeep, et al.
Created Date
2011

The field of Data Mining is widely recognized and accepted for its applications in many business problems to guide decision-making processes based on data. However, in recent times, the scope of these problems has swollen and the methods are under scrutiny for applicability and relevance to real-world circumstances. At the crossroads of innovation and standards, it is important to examine and understand whether the current theoretical methods for industrial applications (which include KDD, SEMMA and CRISP-DM) encompass all possible scenarios that could arise in practical situations. Do the methods require changes or enhancements? As part of the thesis I study …

Contributors
Anand, Aneeth, Liu, Huan, Kempf, Karl G, et al.
Created Date
2012

Limited Local Memory (LLM) multicore architectures are promising powerefficient architectures will scalable memory hierarchy. In LLM multicores, each core can access only a small local memory. Accesses to a large shared global memory can only be made explicitly through Direct Memory Access (DMA) operations. Standard Template Library (STL) is a powerful programming tool and is widely used for software development. STLs provide dynamic data structures, algorithms, and iterators for vector, deque (double-ended queue), list, map (red-black tree), etc. Since the size of the local memory is limited in the cores of the LLM architecture, and data transfer is not automatically …

Contributors
Lu, Di, Shrivastava, Aviral, Chatha, Karamvir, et al.
Created Date
2012

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, …

Contributors
Mcdaniel, Troy Lee, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2012

This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical System Laboratory at Arizona State University. The MBDMIRT toolbox runs under MATLAB/Simulink to simulate the movements of multiple iRobots and to control, after verification by simulation, multiple physical iRobots accordingly. It adopts the Simulink/Stateflow, which exemplifies an approach to MBD, to program the behaviors of the iRobots. The MBDMIRT toolbox reuses and augments the open-source MATLAB-Based Simulator for the iRobot …

Contributors
Su, Shih-Kai, Fainekos, Georgios E, Sarjoughian, Hessam S, et al.
Created Date
2012

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic …

Contributors
Du, Tingfang, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2012

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature …

Contributors
Desai, Digant, Vrudhula, Sarma, Chakrabarti, Chaitali, et al.
Created Date
2013

Smart home system (SHS) is a kind of information system aiming at realizing home automation. The SHS can connect with almost any kind of electronic/electric device used in a home so that they can be controlled and monitored centrally. Today's technology also allows the home owners to control and monitor the SHS installed in their homes remotely. This is typically realized by giving the SHS network access ability. Although the SHS's network access ability brings a lot of conveniences to the home owners, it also makes the SHS facing more security threats than ever before. As a result, when designing …

Contributors
Xu, Rongcao, Ghazarian, Arbi, Bansal, Ajay, et al.
Created Date
2013

Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a lower power consumption rate. With multi-cores, there is increased need for dynamic energy management (DEM), much more than for single-core processors, as DEM for multi-cores is no more a mechanism just to ensure that a processor is kept under specified temperature limits, but also a set of techniques that manage various processor controls like dynamic voltage and frequency scaling (DVFS), …

Contributors
Hanumaiah, Vinay, Vrudhula, Sarma, Chatha, Karamvir, et al.
Created Date
2013

Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core processors have been proposed for streaming applications. This thesis examines the execution and dynamic scheduling of stream programs on embedded multi-core processors. The thesis addresses the problem in the context of a multi-tasking environment with a time varying allocation of processing elements for a particular streaming application. As a solution the thesis proposes a two step approach where the stream program is compiled to gather key application information, and to …

Contributors
Lee, Haeseung, Chatha, Karamvir, Vrudhula, Sarma, et al.
Created Date
2013

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of …

Contributors
Raji Kermani, Ramtin, Fainekos, Georgios, Lee, Yann-Hang, et al.
Created Date
2013

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's atmosphere, in other words their functioning is not disrupted even in presence of disruptive radiation. The presence of these particles forces the designers to come up with design techniques at circuit and chip levels to alleviate the errors which can be encountered in the functioning of microprocessors. Microprocessor evolution has …

Contributors
Ramamurthy, Chandarasekaran, Clark, Lawrence T, Holbert, Keith E, et al.
Created Date
2013

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end …

Contributors
Seo, Jeongjin, Ahn, Gail-Joon, Yau, Stephen S, et al.
Created Date
2014

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role …

Contributors
Gupta, Poonam, Ahn, Gail-Joon, Collofello, James, et al.
Created Date
2014

Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-driven vapor-compressor equipment. This paper proposes an alternative data center cooling architecture that is heat-driven. The source is heat produced by the computer equipment. This dissertation details experiments investigating the quantity and quality of heat that can be captured from a liquid-cooled microprocessor on a computer server blade from a data center. The experiments involve four liquid-cooling setups and associated heat-extraction, including a radical approach using mineral oil. The trials examine the feasibility of using …

Contributors
Haywood, Anna, Phelan, Patrick E, Herrmann, Marcus, et al.
Created Date
2014

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video, image, and audio processors. As a result, optimization approaches targeting mobile computing needs to consider the platform at various levels of granularity. Platform energy consumption and responsiveness are two major considerations for mobile systems since they determine the battery life and user satisfaction, respectively. In this work, the models for …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Ozev, Sule, et al.
Created Date
2014

Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis is a vital task in mission-critical communication networks (MCCNs), where providing a certain level of QoS is essential for national security, safety or economic vitality. In this thesis, the details of all aspects of a comprehensive computational framework for QoS analysis in MCCNs are provided. There are three main QoS …

Contributors
Senturk, Muhammet Burhan, Li, Jing, Baydogan, Mustafa G, et al.
Created Date
2014

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements. This work presents StreamWorks, …

Contributors
Panda, Amrit Kumar, Chatha, Karam S., Wu, Carole-Jean, et al.
Created Date
2014

Coarse Grain Reconfigurable Arrays (CGRAs) are promising accelerators capable of achieving high performance at low power consumption. While CGRAs can efficiently accelerate loop kernels, accelerating loops with control flow (loops with if-then-else structures) is quite challenging. Techniques that handle control flow execution in CGRAs generally use predication. Such techniques execute both branches of an if-then-else structure and select outcome of either branch to commit based on the result of the conditional. This results in poor utilization of CGRA s computational resources. Dual-issue scheme which is the state of the art technique for control flow fetches instructions from both paths of …

Contributors
Rajendran Radhika, Shri Hari, Shrivastava, Aviral, Christen, Jennifer Blain, et al.
Created Date
2014

Android has been the dominant platform in which most of the mobile development is being done. By the end of the second quarter of 2014, 84.7 percent of the entire world mobile phones market share had been captured by Android. The Android library internally uses the modified Linux kernel as the part of its stack. The I/O scheduler, is a part of the Linux kernel, responsible for scheduling data requests to the internal and the external memory devices that are attached to the mobile systems. The usage of solid state drives in the Android tablet has also seen a rise …

Contributors
Sivasankaran, Jeevan Prasath, Lee, Yann Hang, Wu, Carole-Jean, et al.
Created Date
2014

A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other portable computing systems, energy is a limited resource. Based on the energy characterization of a commercial widely-used smartphone, application cores are found to consume a significant part of the total energy consumption of the device. With this insight, the subsequent part of this thesis focuses on the portion of energy that …

Contributors
Pandiyan, Dhinakaran, Wu, Carole-Jean, Shrivastava, Aviral, et al.
Created Date
2014

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks. Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only …

Contributors
Gollapudi, Narasimha Aditya, Dasgupta, Partha, Xue, Guoliang, et al.
Created Date
2014

As the number of cores per chip increases, maintaining cache coherence becomes prohibitive for both power and performance. Non Coherent Cache (NCC) architectures do away with hardware-based cache coherence, but they become difficult to program. Some existing architectures provide a middle ground by providing some shared memory in the hardware. Specifically, the 48-core Intel Single-chip Cloud Computer (SCC) provides some off-chip (DRAM) shared memory some on-chip (SRAM) shared memory. We call such architectures Hybrid Shared Memory, or HSM, manycore architectures. However, how to efficiently execute multi-threaded programs on HSM architectures is an open problem. To be able to execute a …

Contributors
Rawat, Tushar Shishpal, Shrivastava, Aviral, Dasgupta, Partha, et al.
Created Date
2014

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations. Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse …

Contributors
Sattigeri, Prasanna, Spanias, Andreas, Thornton, Trevor, et al.
Created Date
2014

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications. In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes. Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems …

Contributors
Yang, Ming, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2015

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same …

Contributors
Gundecha, Pritam Sureshlal, Liu, Huan, Ahn, Gail-Joon, et al.
Created Date
2015

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2015

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls …

Contributors
Singla, Gaurav Rattan, Ogras, Umit Y, Bakkaloglu, Bertan, et al.
Created Date
2015

Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities become more common and complicated, especially with regard to In-Car Interactive System. This work's main focus is on driver distraction caused by the in-car interactive System. There have been many User Interaction Designs (Buttons, Speech, Visual) for Human-Car communication, in the past and currently present. And, all related studies suggest …

Contributors
Jahagirdar, Tanvi, Gaffar, Ashraf, Ghazarian, Arbi, et al.
Created Date
2015

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts. The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of …

Contributors
Gong, Xiaowen, Zhang, Junshan, Cochran, Douglas, et al.
Created Date
2015

The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape discrimination techniques are charge comparison method, pulse gradient method and frequency gradient method. In the work presented here, we have applied a normalized cross correlation (NCC) approach to real neutron and gamma ray pulses produced by exposing CLYC scintillators to a mixed radiation environment generated by 137Cs, 22Na, 57Co and …

Contributors
CHANDHRAN, PREMKUMAR, Holbert, Keith E, Spanias, Andreas, et al.
Created Date
2015

This report investigates the improvement in the transmission throughput, when fountain codes are used in opportunistic data routing, for a proposed delay tolerant network to connect remote and isolated communities in the Amazon region in Brazil, to the main city of that area. To extend healthcare facilities to the remote and isolated communities, on the banks of river Amazon in Brazil, the network [7] utilizes regularly schedules boats as data mules to carry data from one city to other. Frequent thunder and rain storms, given state of infrastructure and harsh geographical terrain; all contribute to increase in chances of massages …

Contributors
Agarwal, Rachit, Richa, Andrea, Dasgupta, Partha, et al.
Created Date
2015

Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a prototype gateway that exposes a simple and intuitive HTTP Restful interface to access and manipulate devices and the data that they produce while addressing most of the issues listed above. Along with manipulating devices, the framework exposes sensor data in such a way that it can be used to create …

Contributors
Nair, Shankar, Lee, Yann-Hang, Lee, Joohyung, et al.
Created Date
2015

Object tracking is an important topic in multimedia, particularly in applications such as teleconferencing, surveillance and human-computer interface. Its goal is to determine the position of objects in images continuously and reliably. The key steps involved in object tracking are foreground detection to detect moving objects, clustering to enable representation of an object by its centroid, and tracking the centroids to determine the motion parameters. In this thesis, a low cost object tracking system is implemented on a hardware accelerator that is a warp based processor for SIMD/Vector style computations. First, the different foreground detection techniques are explored to figure …

Contributors
Sasikumar, Asha, Chakrabarti, Chaitali, Ogras, Umit, et al.
Created Date
2015

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency. This research introduces Modeling, Simulation and Analysis for Software-as-Service …

Contributors
Li, Wu, Tsai, Wei-Tek, Sarjoughian, Hessam, et al.
Created Date
2015

Access Networks provide the backbone to the Internet connecting the end-users to the core network thus forming the most important segment for connectivity. Access Networks have multiple physical layer medium ranging from fiber cables, to DSL links and Wireless nodes, creating practically-used hybrid access networks. We explore the hybrid access network at the Medium ACcess (MAC) Layer which receives packets segregated as data and control packets, thus providing the needed decoupling of data and control plane. We utilize the Software Defined Networking (SDN) principle of centralized processing with segregated data and control plane to further extend the usability of our …

Contributors
Mercian, Anu, Reisslein, Martin, McGarry, Michael P, et al.
Created Date
2015

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing linear temporal logic as mission specification language for robot motion planning due to its expressiveness and scalability. Several algorithms have been proposed to achieve autonomous temporal logic planning. Also, several frameworks are designed to compose those discrete planners and continuous controllers to make sure the actual trajectory also satisfies the …

Contributors
Zhang, Xiaotong, Fainekos, Georgios, Ben Amor, Heni, et al.
Created Date
2016

Concurrency bugs are one of the most notorious software bugs and are very difficult to manifest. Significant work has been done on detection of atomicity violations bugs for high performance systems but there is not much work related to detect these bugs for embedded systems. Although criteria to claim existence of bugs remains same, approach changes a bit for embedded systems. The main focus of this research is to develop a systemic methodology to address the issue from embedded systems perspective. A framework is developed which predicts the access interleaving patterns that may violate atomicity using memory references of shared …

Contributors
Patel, Jay, Lee, Yann-Hang, Ren, Fengbo, et al.
Created Date
2016

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results …

Contributors
Gogulamudi, Anudeep Reddy, Clark, Lawrence T, Holbert, Keith E, et al.
Created Date
2016

Many neurological disorders, especially those that result in dementia, impact speech and language production. A number of studies have shown that there exist subtle changes in linguistic complexity in these individuals that precede disease onset. However, these studies are conducted on controlled speech samples from a specific task. This thesis explores the possibility of using natural language processing in order to detect declining linguistic complexity from more natural discourse. We use existing data from public figures suspected (or at risk) of suffering from cognitive-linguistic decline, downloaded from the Internet, to detect changes in linguistic complexity. In particular, we focus on …

Contributors
Wang, Shuai, Berisha, Visar, LaCross, Amy, et al.
Created Date
2016

With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane hardware without risk of being affected by or affecting other tenants. However, many areas remain unexplored by current network hypervisor implementations. This thesis presents and evaluates some of the features offered by network hypervisors, such as full header space availability, isolation, and transparent traffic forwarding capabilities for tenants. Flow setup time and throughput are also measured and compared among different …

Contributors
Stall Rechia, Felipe, Syrotiuk, Violet R, Ahn, Gail-Joon, et al.
Created Date
2016

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption. To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process. Dissertation/Thesis

Contributors
Jonas, Michael, Gaffar, Ashraf, Fainekos, Georgios, et al.
Created Date
2016

A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered. The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with Dirichlet, Neumann, Robin or mixed boundary conditions can be reformulated in order to be used by the framework. As an example, the reformulation is presented for systems governed by Schr¨odinger equation, parabolic type, relativistic heat conduction PDE and acoustic wave equation, hyperbolic types. The second form of PDEs of interest …

Contributors
Meyer, Evgeny, Peet, Matthew, Berman, Spring, et al.
Created Date
2016

Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of selecting from a set of complete radios as in software controlled radio, what if the software could select the building blocks based on the user needs. This is the new software-defined flexible radio which would enable users to construct wireless systems that fit their needs, rather than forcing to use …

Contributors
Chagari, Vamsi Reddy, Chakrabarti, Chaitali, Lee, Hyunseok, et al.
Created Date
2016

The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power hungry. As most of these mobile platforms are powered by batteries, energy efficiency has become one of the most critical aspects of such devices. Thus, the energy cost of the fundamental arithmetic operations executed in these applications has to be reduced. As voltage scaling has effectively ended, the energy efficiency of integrated circuits has ceased to improve within successive generations …

Contributors
Satapathy, Saktiswarup, Brunhaver, John, Clark, Lawrence T, et al.
Created Date
2016

Social media has become popular in the past decade. Facebook for example has 1.59 billion active users monthly. With such massive social networks generating lot of data, everyone is constantly looking for ways of leveraging the knowledge from social networks to make their systems more personalized to their end users. And with rapid increase in the usage of mobile phones and wearables, social media data is being tied to spatial networks. This research document proposes an efficient technique that answers socially k-Nearest Neighbors with Spatial Range Filter. The proposed approach performs a joint search on both the social and spatial …

Contributors
Pasumarthy, Nitin, Sarwat, Mohamed, Papotti, Paolo, et al.
Created Date
2016

Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some methods also depend on high-precision meta-data which is not always available. This thesis proposes a complementary detection approach based on an entirely new source of information: the movement patterns of other nearby vehicles. This approach is robust to traditional sources of error, and may serve as a viable supplemental detection …

Contributors
Campbell, Joseph, Fainekos, Georgios, Ben Amor, Heni, et al.
Created Date
2016

Integrated circuits must be energy efficient. This efficiency affects all aspects of chip design, from the battery life of embedded devices to thermal heating on high performance servers. As technology scaling slows, future generations of transistors will lack the energy efficiency gains as it has had in previous generations. Therefore, other sources of energy efficiency will be much more important. Many computations have the potential to be executed for extreme energy efficiency but are not instigated because the platforms they run on are not optimized for efficient execution. ASICs improve energy efficiency by reducing flexibility and leveraging the properties of …

Contributors
Mackay, Curtis Alexander, Brunhaver, John, Karam, Lina J, et al.
Created Date
2016

A lot of strides have been made in enabling technologies to aid individuals with visual impairment live an independent life. The advent of smart devices and participatory web has especially facilitated the possibility of new interactions to aide everyday tasks. Current systems however tend to be complex and require multiple cumbersome devices which invariably come with steep learning curves. Building new cyber-human systems with simple integrated interfaces while keeping in mind the specific requirements of the target users would help alleviate their mundane yet significant daily needs. Navigation is one such significant need that forms an integral part of everyday …

Contributors
Paladugu, Devi Archana, Li, Baoxin, Hedgpeth, Terri, et al.
Created Date
2016