Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Doctoral Dissertation
Subject
Date Range
2011 2019


Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact that different L1s have distinct phonological patterns to indicate the diverse L2 speech learning outcomes for speakers from different L1 backgrounds. This dissertation hypothesizes that phonological distances between accented speech and speakers' L1 speech are also correlated with perceived accentedness, and the correlations are negative for some phonological properties. Moreover, contrastive phonological distinctions between L1s and L2 will manifest themselves in the accented speech produced by speaker from these L1s. …

Contributors
Tu, Ming, Berisha, Visar, Liss, Julie M, et al.
Created Date
2018

Imagine that we have a piece of matter that can change its physical properties like its shape, density, conductivity, or color in a programmable fashion based on either user input or autonomous sensing. This is the vision behind what is commonly known as programmable matter. Envisioning systems of nano-sensors devices, programmable matter consists of systems of simple computational elements, called particles, that can establish and release bonds, compute, and can actively move in a self-organized way. In this dissertation the feasibility of solving fundamental problems relevant for programmable matter is investigated. As a model for such self-organizing particle systems (SOPS), …

Contributors
Derakhshandeh, Zahra, Richa, Andrea, Sen, Arunabha, et al.
Created Date
2017

Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications are studied. In the first part, unmanned aerial system-to-ground communications channel models are derived from empirical data collected from software-defined radio transceivers in residential and mountainous desert environments using a small (< 20 kg) unmanned aerial system during low-altitude flight (< 130 m). The Kullback-Leibler divergence measure was employed to characterize model mismatch from the empirical data. Using this measure …

Contributors
Gutierrez, Richard, Bliss, Daniel W, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures. Recently edge computing has emerged to reduce the negative impacts of tasks offloading to …

Contributors
Song, Yaozhong, Yau, Sik-Sang, Huang, Dijiang, et al.
Created Date
2018

User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven …

Contributors
Gaudette, Benjamin David, Vrudhula, Sarma, Wu, Carole-Jean, et al.
Created Date
2017

In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well …

Contributors
Kia, Behnam, Ditto, William, Huang, Liang, et al.
Created Date
2011

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node in the network for spreading the diffusion and how to top or contain a cascading failure in the network. This dissertation consists of three parts. In the first part, we study the problem of locating multiple diffusion sources in networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete snapshot of …

Contributors
Chen, Zhen, Ying, Lei, Tong, Hanghang, et al.
Created Date
2018

Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It …

Contributors
Yang, Jinghua, Vrudhula, Sarma, Barnaby, Hugh, et al.
Created Date
2018

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations. Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse …

Contributors
Sattigeri, Prasanna, Spanias, Andreas, Thornton, Trevor, et al.
Created Date
2014

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods such as testing and monitoring of the CPS are considered in the industry. The formal representation of the CPS requirements is a challenging task. In addition, checking the system outputs with respect to requirements is a computationally complex problem. In this dissertation, these problems for the verification of CPS are …

Contributors
Dokhanchi, Adel, Fainekos, Georgios, Lee, Yann-Hang, et al.
Created Date
2017

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory …

Contributors
Ma, Yufei, Vrudhula, Sarma, Seo, Jae-sun, et al.
Created Date
2018

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption. To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process. Dissertation/Thesis

Contributors
Jonas, Michael, Gaffar, Ashraf, Fainekos, Georgios, et al.
Created Date
2016

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications. In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes. Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems …

Contributors
Yang, Ming, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2015

With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures. First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution …

Contributors
Lee, Shin-Ying, Wu, Carole-Jean, Chakrabarti, Chaitali, et al.
Created Date
2017

Access Networks provide the backbone to the Internet connecting the end-users to the core network thus forming the most important segment for connectivity. Access Networks have multiple physical layer medium ranging from fiber cables, to DSL links and Wireless nodes, creating practically-used hybrid access networks. We explore the hybrid access network at the Medium ACcess (MAC) Layer which receives packets segregated as data and control packets, thus providing the needed decoupling of data and control plane. We utilize the Software Defined Networking (SDN) principle of centralized processing with segregated data and control plane to further extend the usability of our …

Contributors
Mercian, Anu, Reisslein, Martin, McGarry, Michael P, et al.
Created Date
2015

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same …

Contributors
Gundecha, Pritam Sureshlal, Liu, Huan, Ahn, Gail-Joon, et al.
Created Date
2015

General-purpose processors propel the advances and innovations that are the subject of humanity’s many endeavors. Catering to this demand, chip-multiprocessors (CMPs) and general-purpose graphics processing units (GPGPUs) have seen many high-performance innovations in their architectures. With these advances, the memory subsystem has become the performance- and energy-limiting aspect of CMPs and GPGPUs alike. This dissertation identifies and mitigates the key performance and energy-efficiency bottlenecks in the memory subsystem of general-purpose processors via novel, practical, microarchitecture and system-architecture solutions. Addressing the important Last Level Cache (LLC) management problem in CMPs, I observe that LLC management decisions made in isolation, as in …

Contributors
Arunkumar, Akhil, Wu, Carole-Jean, Shrivastava, Aviral, et al.
Created Date
2018

Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a LIDAR, a color camera and a thermal camera to build RGB-Depth-Thermal (RGBDT) maps is investigated. An algorithm that solves a non-linear optimization problem to compute the relative pose between the cameras and the LIDAR is presented. The relative pose estimate is then used to find the color and thermal texture …

Contributors
Krishnan, Aravindhan K., Saripalli, Srikanth, Klesh, Andrew, et al.
Created Date
2016

Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-driven vapor-compressor equipment. This paper proposes an alternative data center cooling architecture that is heat-driven. The source is heat produced by the computer equipment. This dissertation details experiments investigating the quantity and quality of heat that can be captured from a liquid-cooled microprocessor on a computer server blade from a data center. The experiments involve four liquid-cooling setups and associated heat-extraction, including a radical approach using mineral oil. The trials examine the feasibility of using …

Contributors
Haywood, Anna, Phelan, Patrick E, Herrmann, Marcus, et al.
Created Date
2014

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency. This research introduces Modeling, Simulation and Analysis for Software-as-Service …

Contributors
Li, Wu, Tsai, Wei-Tek, Sarjoughian, Hessam, et al.
Created Date
2015

Multi-tenancy architecture (MTA) is often used in Software-as-a-Service (SaaS) and the central idea is that multiple tenant applications can be developed using compo nents stored in the SaaS infrastructure. Recently, MTA has been extended where a tenant application can have its own sub-tenants as the tenant application acts like a SaaS infrastructure. In other words, MTA is extended to STA (Sub-Tenancy Architecture ). In STA, each tenant application not only need to develop its own functionalities, but also need to prepare an infrastructure to allow its sub-tenants to develop customized applications. This dissertation formulates eight models for STA, and proposes …

Contributors
Zhong, Peide, Davulcu, Hasan, Sarjoughian, Hessam, et al.
Created Date
2017

The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for ensuring the well-being of patients suffering from chronic diseases as well as for providing a low cost means for maintaining the health for everyone else. Automatic dietary monitoring consists of: a) Determining the type and amount of food intake, and b) Monitoring eating behavior, i.e., time, frequency, and speed of eating. Although there are some existing techniques towards these ends, …

Contributors
Lee, Junghyo, Gupta, Sandeep K.S., Banerjee, Ayan, et al.
Created Date
2019

Nearly 60% of the world population uses a mobile phone, which is typically powered by a system-on-chip (SoC). While the mobile platform capabilities range widely, responsiveness, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful SoC with numerous other resources, including display, memory, power management IC, battery and wireless modems. Furthermore, the SoC itself is a heterogeneous resource that integrates many processing elements, such as CPU cores, GPU, video, image, and audio processors. Therefore, CPU cores do not dominate the platform power …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Chakrabarti, Chaitali, et al.
Created Date
2018

Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and …

Contributors
Ramamurthy, Chandarasekaran, Clark, Lawrence T, Allee, David, et al.
Created Date
2017

Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well …

Contributors
Nunes, Eric, Shakarian, Paulo, Ahn, Gail-Joon, et al.
Created Date
2018

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving. One of the expectations from fully-automated vehicles is never to cause …

Contributors
Tuncali, Cumhur Erkan, Fainekos, Georgios, Ben Amor, Heni, et al.
Created Date
2019

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, …

Contributors
Sun, Jingchao, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2017

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices. Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on …

Contributors
Chen, Yimin, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2018

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and the number of safety-critical applications – application with unacceptable consequences of failure. Software-level error resilience schemes are attractive because they can provide commercial-off-the-shelf microprocessors with adaptive and scalable reliability. Among all software-level error resilience solutions, in-application instruction replication based approaches have been widely used and are deemed to be the most effective. However, existing instruction-based replication schemes only protect some part of computations i.e. arithmetic and logical instructions and leave …

Contributors
Didehban, Moslem, Shrivastava, Aviral, Wu, Carole-Jean, et al.
Created Date
2018

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, …

Contributors
Mcdaniel, Troy Lee, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2012

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements. This work presents StreamWorks, …

Contributors
Panda, Amrit Kumar, Chatha, Karam S., Wu, Carole-Jean, et al.
Created Date
2014

A lot of strides have been made in enabling technologies to aid individuals with visual impairment live an independent life. The advent of smart devices and participatory web has especially facilitated the possibility of new interactions to aide everyday tasks. Current systems however tend to be complex and require multiple cumbersome devices which invariably come with steep learning curves. Building new cyber-human systems with simple integrated interfaces while keeping in mind the specific requirements of the target users would help alleviate their mundane yet significant daily needs. Navigation is one such significant need that forms an integral part of everyday …

Contributors
Paladugu, Devi Archana, Li, Baoxin, Hedgpeth, Terri, et al.
Created Date
2016

Multicore processors have proliferated in nearly all forms of computing, from servers, desktop, to smartphones. The primary reason for this large adoption of multicore processors is due to its ability to overcome the power-wall by providing higher performance at a lower power consumption rate. With multi-cores, there is increased need for dynamic energy management (DEM), much more than for single-core processors, as DEM for multi-cores is no more a mechanism just to ensure that a processor is kept under specified temperature limits, but also a set of techniques that manage various processor controls like dynamic voltage and frequency scaling (DVFS), …

Contributors
Hanumaiah, Vinay, Vrudhula, Sarma, Chatha, Karamvir, et al.
Created Date
2013

Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have …

Contributors
Kim, Yooseong, Shrivastava, Aviral, Broman, David, et al.
Created Date
2017

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts. The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of …

Contributors
Gong, Xiaowen, Zhang, Junshan, Cochran, Douglas, et al.
Created Date
2015