Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures. First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution …

Contributors
Lee, Shin-Ying, Wu, Carole-Jean, Chakrabarti, Chaitali, et al.
Created Date
2017

The availability of a wide range of general purpose as well as accelerator cores on modern smartphones means that a significant number of applications can be executed on a smartphone simultaneously, resulting in an ever increasing demand on the memory subsystem. While the increased computation capability is intended for improving user experience, memory requests from each concurrent application exhibit unique memory access patterns as well as specific timing constraints. If not considered, this could lead to significant memory contention and result in lowered user experience. This work first analyzes the impact of memory degradation caused by the interference at the …

Contributors
SHINGARI, DAVESH, Wu, Carole-Jean, Vrudhula, Sarma, et al.
Created Date
2016

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements. This work presents StreamWorks, …

Contributors
Panda, Amrit Kumar, Chatha, Karam S., Wu, Carole-Jean, et al.
Created Date
2014

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature …

Contributors
Desai, Digant, Vrudhula, Sarma, Chakrabarti, Chaitali, et al.
Created Date
2013