Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install Global Positioning System(GPS) receivers and administrators must continuously monitor these devices. There have been some urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) Scalability: most of them only offer single-machine solution which is not adequate to produce large-scale …

Contributors
Fu, Zishan, Sarwat, Mohamed, Pedrielli, Giulia, et al.
Created Date
2019

Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable of accelerating even non-parallel loops and loops with low trip-counts. One challenge in compiling for CGRAs is to manage both recurring and nonrecurring variables in the register file (RF) of the CGRA. Although prior works have managed recurring variables via rotating RF, they access the nonrecurring variables through either a global RF or from a constant memory. The former does not scale well, and the latter degrades the mapping quality. This work proposes a hardware-software codesign approach in order to manage all the variables in a local nonrotating RF. Hardware provides modulo …

Contributors
Dave, Shail, Shrivastava, Aviral, Ren, Fengbo, et al.
Created Date
2016