Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the …

Contributors
Engstrom, Erika Lyn, Friesen, Cody, Buttry, Daniel, et al.
Created Date
2011

This investigation is divided into two portions linked together by the momentous reaches of electrochemistry science, principles influencing everyday phenomena as well as innovative research in the field of energy transformation. The first portion explores the strategies for flue gas carbon dioxide capture and release using electrochemical means. The main focus is in the role thiolates play as reversible strong nucleophiles with the ability to capture CO2 and form thiocarbonates. Carbon dioxide in this form is transported and separated from thiocarbonate through electrochemical oxidation to complete the release portion of this catch-and-release approach. Two testing design systems play a fundamental …

Contributors
Castro De la Torre, Helme Atic, Friesen, Cody, Buttry, Daniel, et al.
Created Date
2016

This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses …

Contributors
Mickelson, Lawrence L, Friesen, Cody, Sieradzki, Karl, et al.
Created Date
2011