Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2010 2019


Demand for green energy alternatives to provide stable and reliable energy solutions has increased over the years which has led to the rapid expansion of global markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest amongst these technologies is the Bifacial PV modules, which harvests incident radiation from both sides of the module. The overall power generation can be significantly increased by using these bifacial modules. The purpose of this research is to investigate and maximize the effect of back reflectors, designed to increase the efficiency of the module by utilizing the intercell light passing through the …

Contributors
MARTIN, PEDRO JESSE, Tamizhmani, Govindasamy, Phelan, Patrick, et al.
Created Date
2019

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 …

Contributors
Alajmi, Turki, Phelan, Patrick E, Kaloush, Kamil, et al.
Created Date
2019

Societies seeking sustainability are transitioning from fossil fuels to clean, renewable energy sources to mitigate dangerous climate change. Energy transitions involve ethically controversial decisions that affect current and future generations’ well-being. As energy systems in the United States transition towards renewable energy, American Indian reservations with abundant energy sources are some of the most significantly impacted communities. Strikingly, energy ethicists have not yet developed a systematic approach for prescribing ethical action within the context of energy decisions. This dissertation reinvents energy ethics as a distinct sub-discipline of applied ethics, integrating virtue ethics, deontology, and consequentialism with Sioux, Navajo, and Hopi …

Contributors
Bethem, Jacob, DesRoches, Tyler, Pasqualetti, Martin J, et al.
Created Date
2019

The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity for pumping for water supply. While previous work has considered the dependency of WSS on the electrical power, this work incorporates into an optimization-simulation framework, consideration of the impact of short and long-term limited availability of water and/or electrical energy. This research focuses on the water supply system (WSS) facet …

Contributors
Khatavkar, Puneet Nandkumar, Mays, Larry W, Vittal, Vijay, et al.
Created Date
2019

In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for solar PV and electronic devices. This document outlines work completed to this end. Chapter 1 introduces the areas for cost reductions and improvements in efficiency to drive down the cost per watt of solar modules. Next, in Chapter 2, conventional and advanced metallization methods are reviewed, and our proposed solution …

Contributors
Jeffries, April Marie, Bertoni, Mariana I, Saive, Rebecca, et al.
Created Date
2019

Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating and validating synthetic test cases, as well as a few use-cases for how access to synthetic data enables otherwise impossible analysis. First, the question of how synthetic cases may be generated in an automatic manner, and how synthetic samples should be validated to assess whether they are sufficiently ``real'' is considered. Transmission and distribution levels are treated separately, due to …

Contributors
Schweitzer, Eran, Scaglione, Anna, Hedman, Kory W, et al.
Created Date
2019

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the …

Contributors
Buddha, viswa sai pavan, Tamizhmani, Govindasamy, Alford, Terry, et al.
Created Date
2018

Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage substations. The problem with switching surges is encountered when a lot of power is transmitted across a transmission line/network, typically from a concentrated generation node to a concentrated load. The problem becomes significantly worse when the transmission line is long and when the voltage levels are high, typically above 400 kV. These overvoltage transients occur following any type of switching action such as breaker operation, fault occurrence/clearance and energization, and they …

Contributors
Shaikh, Mohammed Mubashir, Qin, Jiangchao, Heydt, Gerald T, et al.
Created Date
2018

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve …

Contributors
Romero, Joseph Thomas, Shock, Everett L, Cadillo-Quiroz, Hinsby, et al.
Created Date
2018

The molecular modification of semiconductors has applications in energy conversion and storage, including artificial photosynthesis. In nature, the active sites of enzymes are typically earth-abundant metal centers and the protein provides a unique three-dimensional environment for effecting catalytic transformations. Inspired by this biological architecture, a synthetic methodology using surface-grafted polymers with discrete chemical recognition sites for assembling human-engineered catalysts in three-dimensional environments is presented. The use of polymeric coatings to interface cobalt-containing catalysts with semiconductors for solar fuel production is introduced in Chapter 1. The following three chapters demonstrate the versatility of this modular approach to interface cobalt-containing catalysts with …

Contributors
Beiler, Anna Mary, Moore, Gary F., Moore, Thomas A., et al.
Created Date
2018