Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating and validating synthetic test cases, as well as a few use-cases for how access to synthetic data enables otherwise impossible analysis. First, the question of how synthetic cases may be generated in an automatic manner, and how synthetic samples should be validated to assess whether they are sufficiently ``real'' is considered. Transmission and distribution levels are treated separately, due to …

Contributors
Schweitzer, Eran, Scaglione, Anna, Hedman, Kory W, et al.
Created Date
2019

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead market models is implemented. The benefits of these practices are well understood by the industry; however, the implications these practices have on market outcomes and system security have not been thoroughly investigated. By solving a day-ahead market model with and without select constraint relaxations and comparing the resulting market outcomes …

Contributors
Al-Abdullah, Yousef Mohammad, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2016

The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models may not be satisfactory with increasing penetration levels of stochastic resources; such conventional models pro-cure reserves in accordance with deterministic criteria whose deliverability, in the event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies are needed to assist system operators in maintaining reliability at least cost. Contemporary …

Contributors
Singhal, Nikita Ghanshyam, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2018

With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on system operators. Due to its energy-shifting and fast-ramping capabilities, energy storage (ES) has been considered as an attractive solution to alleviate the increased renewable uncertainty and variability. In this dissertation, stochastic optimization is utilized to evaluate the benefit of bulk energy storage to facilitate the integration of high levels of renewable resources in transmission systems. A cost-benefit analysis is performed …

Contributors
Li, Nan, Hedman, Kory W, Tylavksy, Daniel J, et al.
Created Date
2016