Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped …

Contributors
Becker, Jacob, Zhang, Yong-Hang, Bertoni, Mariana, et al.
Created Date
2017

Silicon photovoltaics (PV) is approaching its theoretical efficiency limit as a single-junction technology. To break this limit and further lower the PV-generated levelized cost of electricity, it is necessary to engineer a silicon-based “tandem” technology in which a solar cell of another material is stacked on top of silicon to make more efficient use of the full solar spectrum. This dissertation understands and develops four aspects of silicon-based tandem PV technology. First, a new “spectral efficiency” concept is proposed to understand how tandem cells should be designed and to identify the best tandem partners for silicon cells. Using spectral efficiency, …

Contributors
Yu, Zhengshan, Holman, Zachary C, Zhang, Yong-Hang, et al.
Created Date
2018

CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 μs) and low effective interface recombination velocity at the CdTe/MgxCd1 xTe heterointerface (~1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are …

Contributors
Zhao, Xinhao, Zhang, Yong-Hang, Johnson, Shane, et al.
Created Date
2016

Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The record polycrystalline CdTe thin-film cell efficiency has reached 22.1%, with excellent short-circuit current densities (Jsc) and fill-factors (FF). However, the Voc (~900 mV) is still far below the theoretical value, due to the large non-radiative recombination in the polycrystalline CdTe absorber, and the low-level p-type doping. Monocrystalline CdTe/MgCdTe double-heterostructures (DHs) …

Contributors
Zhao, Yuan, Zhang, Yong-Hang, Bertoni, Mariana, et al.
Created Date
2016