Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating and validating synthetic test cases, as well as a few use-cases for how access to synthetic data enables otherwise impossible analysis. First, the question of how synthetic cases may be generated in an automatic manner, and how synthetic samples should be validated to assess whether they are sufficiently ``real'' is considered. Transmission and distribution levels are treated separately, due to …

Contributors
Schweitzer, Eran, Scaglione, Anna, Hedman, Kory W, et al.
Created Date
2019

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead market models is implemented. The benefits of these practices are well understood by the industry; however, the implications these practices have on market outcomes and system security have not been thoroughly investigated. By solving a day-ahead market model with and without select constraint relaxations and comparing the resulting market outcomes …

Contributors
Al-Abdullah, Yousef Mohammad, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2016

Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide …

Contributors
Ramasubramanian, Deepak, Vittal, Vijay, Undrill, John, et al.
Created Date
2017

Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated. In order to design insulators suitably, a better understanding of the insulator flashover is required, as it is a serious issue regarding the safe operation of power systems. However, it is not always feasible to conduct field and laboratory studies due to limited time and money. The desire to accurately …

Contributors
He, Li, Gorur, Ravi S, Karady, George K, et al.
Created Date
2016