Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Subject
Date Range
2010 2020


Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale and large-scale printing applications modelled by finite element analysis software and printed for laboratory testing. The laboratory testing included mortar cylinder testing, digital image correlation (DIC), and four pointbending tests. Results demonstrated comparable performance between casted, printed solid, and printed optimized flexural elements. Results additionally mimicked finite element models regarding …

Contributors
Bjelland, Aidan D, Neithalath, Narayanan, Hoover, Christian, et al.
Created Date
2020

Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In contrast to capitalistic hardware production, Open Design practitioners publicly share design files, blueprints and knowhow through various channels including internet platforms and in-person workshops. These designs are typically replicated, modified, improved and reshared by individuals and groups who are broadly referred to as ‘makers’. This dissertation aims to expand the …

Contributors
Fernando, Kattak Kuttige Rex Piyum, Kuznetsov, Anastasia, Turaga, Pavan, et al.
Created Date
2020

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when …

Contributors
Taylor, Sydney June, Wang, Liping, Wells, Valana, et al.
Created Date
2020

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft …

Contributors
Kotagama, Praveen, Rykaczewski, Konrad, Wang, Robert, et al.
Created Date
2020

The alternative project delivery methods (APDMs) today are being increasingly used by owner organizations in the architecture, engineering, and construction (AEC) industry. Yet the adoption of these methods can be extremely difficult to accomplish and requires significant change management efforts. To facilitate the APDM adoption, this research aimed to better understand how AEC owner organizations have changed from only using the design-bid-build method to also successfully implementing APDMs from an organizational change perspective. This research utilized a literature review, survey and interviews to fulfill the research objectives. The dissertation follows a three paper format. The first paper focuses on identifying …

Contributors
Aldossari, Khaled Medath, Sullivan, Kenneth T, Hurtado, Kristen C, et al.
Created Date
2020

Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is …

Contributors
Som, Anirudh, Turaga, Pavan, Krishnamurthi, Narayanan, et al.
Created Date
2020

Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from afar. As a sensory organ in particular, the eyes have an unparalleled ability to adjust to varying degrees of light, color, and distance. Therefore, in the case of a non-visual traveler, someone who is blind or low vision, access to visual information is unattainable if it is positioned beyond the …

Contributors
Duarte, Bryan Joiner, McDaniel, Troy, Davulcu, Hasan, et al.
Created Date
2020

ABSTRACT Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted where each candidate was asked the same questions to determine the current views of benchmarking reports and associated data in the healthcare industry. The questions asked in the second round were developed from the answers to the first-round questions. The research showed the panel preferred changes in the data collection methods as well as …

Contributors
Chalmers, Jeffrey, Sullivan, Kenneth, Smithwick, Jake, et al.
Created Date
2020

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following …

Contributors
Bhaskaran, Rahul, Tamizhmani, Govindasamy, Phelan, Patrick, et al.
Created Date
2020

Analytics are being collected on a day to day basis on just about anything that you can think of. Sports is one of the recent fields that has started implementing the tool into their game. Analytics can be described as an abundance of statistical information that show situational tendencies of other teams and players. It is hypothesized that analytics provide anticipatory information that allows athletes to know what is coming; therefore, allowing them to perform better in real game scenarios. However, it is unclear how this information should be presented to athletes and whether athletes can actually retain the abundance …

Contributors
Gin, Andrew B, Gray, Robert, Cooke, Nancy, et al.
Created Date
2020

The intrinsic material properties of diamond are attractive for use in high power limiter/receiver protector (RP) systems, especially the ones required at the input of radio transceivers. The RP device presents a low capacitance and high resistance to low input signals, thereby adding negligible insertion loss to these desired signals. However, at high input radio frequency (RF) power levels, the RP turns on with a resistance much smaller than the 50 Ω characteristic impedance, reflecting most of the potentially damaging input power away from the receiver input. P-type-intrinsic-n-type (PIN) diodes made of Silicon and Gallium Arsenide used in today’s conventional …

Contributors
Ahmad, Mohammad Faizan, Thornton, Trevor J., Goodnick, Stephen M., et al.
Created Date
2020

Traditionally nanoporous gold is created by selective dissolution of silver or copper from a binary silver-gold or copper-gold alloy. These alloys serve as prototypical model systems for a phenomenon referred to as stress-corrosion cracking. Stress-corrosion cracking is the brittle failure of a normally ductile material occurring in a corrosive environment under a tensile stress. Silver-gold can experience this type of brittle fracture for a range of compositions. The corrosion process in this alloy results in a bicontinuous nanoscale morphology composed of gold-rich ligaments and voids often referred to as nanoporous gold. Experiments have shown that monolithic nanoporous gold can sustain …

Contributors
Karasz, Erin, Sieradzki, Karl, Chawla, Nikhilesh, et al.
Created Date
2020

Prior research has provided evidence to suggest that veterans exhibit unique assets that benefit them in engineering education and engineering industry. However, there is little evidence to determine whether their assets are due to military service or other demographic factors such as age, maturity, or gender. The aim of this study is to discover, better understand, and disseminate the unique assets that veterans gained through military service and continue to employ as engineering students or professional engineers. This strength-based thematic analysis investigated the semi-structured narrative interviews of 18 military veterans who are now engineering students or professionals in engineering industry. …

Contributors
Sheppard, Michael Scott, Kellam, Nadia N, Bekki, Jennifer M, et al.
Created Date
2020

This dissertation explores the use of deterministic scheduling theory for the design and development of practical manufacturing scheduling strategies as alternatives to current scheduling methods, particularly those used to minimize completion times and increase system capacity utilization. The efficient scheduling of production systems can make the difference between a thriving and a failing enterprise, especially when expanding capacity is limited by the lead time or the high cost of acquiring additional manufacturing resources. A multi-objective optimization (MOO) resource constrained parallel machine scheduling model with setups, machine eligibility restrictions, release and due dates with user interaction is developed for the scheduling …

Contributors
Munoz-Estrada, Luis Fernando, Villalobos, Jesus R, Fowler, John, et al.
Created Date
2020

Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding the relation between interfacial adhesion and water content inside photovoltaic modules can help mitigate detrimental power losses. Water content measurements via water reflectometry detection combined with 180° peel tests were used to study adhesion of module materials exposed to damp heat and dry heat conditions. The effect of temperature, cumulative …

Contributors
Theut, Nicholas, Bertoni, Mariana, Holman, Zachary, et al.
Created Date
2020

Optical metasurfaces, i.e. artificially engineered arrays of subwavelength building blocks supporting abrupt and substantial light confinement, was employed to demonstrate a novel generation of devices for circularly polarized detection, full-Stokes polarimetry and all-optical modulation with ultra-compact footprint and chip-integrability. Optical chirality is essential for generation, manipulation and detection of circularly polarized light (CPL), thus finds many applications in quantum computing, communication, spectroscopy, biomedical diagnosis, imaging and sensing. Compared to natural chiral materials, chiral metamaterials and metasurfaces enable much stronger chirality on subwavelength scale; therefore, they are ideal for device miniaturization and system integration. However, they are usually associated with low …

Contributors
Basiri, Ali, Yao, Yu, Ning, Cun-Zheng, et al.
Created Date
2020

A defining feature of many United States (U.S.) doctoral engineering programs is their large proportion of international students. Despite the large student body and the significant impacts that they bring to the U.S. education and economy, a scarcity of research on engineering doctoral students has taken into consideration the existence of international students and the consequential diversity in citizenship among all students. This study was designed to bridge the research gap to improve the understanding of sense of belonging from the perspective of international engineering doctoral students. A multi-phase mixed methods research approach was taken for this study. The qualitative …

Contributors
Lee, Eunsil, Bekki, Jennifer, Carberry, Adam, et al.
Created Date
2020

The manufacturing process for electronic systems involves many players, from chip/board design and fabrication to firmware design and installation. In today's global supply chain, any of these steps are prone to interference from rogue players, creating a security risk. Manufactured devices need to be verified to perform only their intended operations since it is not economically feasible to control the supply chain and use only trusted facilities. It is becoming increasingly necessary to trust but verify the received devices both at production and in the field. Unauthorized hardware or firmware modifications, known as Trojans, can steal information, drain the battery, …

Contributors
Karabacak, Fatih, Ozev, Sule, Ogras, Umit Y, et al.
Created Date
2020

A framework to obtain the failure surface of a unidirectional composite which can be used as an input for Generalized Tabulated Failure Criterion in MAT_213 – an orthotropic elasto-plastic material model implemented in LS-DYNA, a commercial finite element program, is discussed in this research. A finite element model consisting of the fiber and the matrix is generated using the Virtual Testing Software System (VTSS) developed at Arizona State University (ASU). The framework is illustrated using the T800-F3900 unidirectional composite material manufactured by Toray Composites. The T800S fiber is modeled using MAT_213. The F3900 matrix phase is modeled using MAT_187-SAMP1. The …

Contributors
Parakhiya, Yatin, Rajan, Subramaniam, Mobahser, Barzin, et al.
Created Date
2020

This dissertation focuses on the structural and optical properties of III-V semiconductor materials. Transmission electron microscopy and atomic force microscopy are used to study at the nanometer scale, the structural properties of defects, interfaces, and surfaces. A correlation with optical properties has been performed using cathodoluminescence. The dissertation consists of four parts. The first part focuses on InAs quantum dots (QDs) embedded in a GaInP matrix for applications into intermediate band solar cells. The CuPt ordering of the group-III elements in Ga0.5In0.5P has been found to vary during growth of InAs QDs capped with GaAs. The degree of ordering depends …

Contributors
SU, PO-YI, Ponce, Fernando A, Smith, David J, et al.
Created Date
2020

This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work focused on reaching a larger teacher population along with providing a more robust robot design and construction. The end goal of this graduate thesis is to develop a PDP that reaches multiple teachers, involves a more robust robot design, and lasts beyond this developmental year. There have been many similar …

Contributors
lerner, jonah, Carberry, Adam, Walters, Molina, et al.
Created Date
2020

In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in the string; and, iii) current-voltage (I-V) curve tracing of all the modules in the string. In the first and second approaches, the EL images are used to detect the modules with broken cells, and the IR images are used to detect the modules with hotspot cells, respectively. These two methods …

Contributors
Murali, Sanjay, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date
2020

In recent years, many school districts, community colleges, and universities in California have implemented energy management-as-a-service (EMaaS). The purpose of this study was to analyzes how EMaaS has been realized in California schools, including how performance expectations and service guarantees have been met, how value is created and captured, and which trends are emerging in the pay-for-performance models. This study used a qualitative research design to identify patterns in the collected data and allow theories to be drawn from the emergent categories and themes. Ten in-depth interviews were conducted with a diverse pool of facility managers, energy practitioners, superintendents, and …

Contributors
Hawkins, Spencer, Sullivan, Kenneth, Parrish, Kristen, et al.
Created Date
2020

The popularity of solar photovoltaic (PV) energy is growing across the globe with more than 500 GW installed in 2018 with a capacity of 640 GW in 2019. Improved PV module reliability minimizes the levelized cost of energy. Studying and accelerating encapsulant browning and solder bond degradation—two of the most commonly observed degradation modes in the field—in a lab requires replicating the stress conditions that induce the same field degradation modes in a controlled accelerated environment to reduce testing time. Accelerated testing is vital in learning about the reliability of solar PV modules. The unique streamlined approach taken saves time …

Contributors
Gopalakrishna, Hamsini, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2020

Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of the substrate can be engineered to enhance mass-transport and light accessibility. In this work, two types of fiber architectures (i.e., dispersed polymer/titania phase or D-phase, and multi-phase polymer-core/composite-shell fibers or M-phase) were explored as effective substrate solutions for anchoring titania. These fibers were fabricated using a low-cost and scalable fiber …

Contributors
Kanth, Namrata, Song, Kenan, Tongay, Sefaattin, et al.
Created Date
2020

About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research aims to preliminarily investigate the actual efficiency which can be obtained through experimental data and compare that to the Carnot or theoretical maximum efficiency. The actual efficiency is investigated through three approaches. However, only the efficiency results from the second method are validated since the other approaches are based on …

Contributors
Manford, David, Phelan, Patrick, Calhoun, Ronald, et al.
Created Date
2020

The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the …

Contributors
Dasinor, Emmanuel, Phelan, Patrick, Milcarek, Ryan, et al.
Created Date
2020

Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a PEEK-Carbon Nanotube composite filament for Fused Filament Fabrication (FFF) Additive Manufacturing that is ESD compliant. In addition, it demonstrates that the FFF process can be used to print tools with the required accuracy, ESD compliance and mechanical properties necessary for the electronics industry at a low rate production level. Current Additive Manufacturing …

Contributors
Churchwell, Raymond L, Sugar, Thomas, Rogers, Bradley, et al.
Created Date
2020

The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with the number of agents. One scalable approach to characterizing the behavior of a multi-agent system is possible when the agents' states evolve over time according to a Markov process. In this case, the density of agents over space and time is governed by a set of difference or differential equations …

Contributors
Biswal, Shiba, Berman, Spring, Fainekos, Georgios, et al.
Created Date
2020

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based Resources (IBR), for that considers the voltage and frequency limits specified by the Western Electricity Coordinating Council (WECC) Transmission Planning (TPL) criteria, and the tie line power flow limits between the area-under-study and its neighbors under contingency conditions. A WECC power flow and dynamic file is analyzed and modified in …

Contributors
Albhrani, Hashem A M H S, Pal, Anamitra, Holbert, Keith E, et al.
Created Date
2020

Over the past century, the world has become increasingly more complex. Modern systems (i.e blockchain, internet of things (IoT), and global supply chains) are inherently difficult to comprehend due to their high degree of connectivity. Understanding the nature of complex systems becomes an acutely more critical skill set for managing socio-technical infrastructure systems. As existing education programs and technical analysis approaches fail to teach and describe modern complexities, resulting consequences have direct impacts on real-world systems. Complex systems are characterized by exhibiting nonlinearity, interdependencies, feedback loops, and stochasticity. Since these four traits are counterintuitive, those responsible for managing complex systems …

Contributors
Naufel, Lauren Rae McBurnett, Bekki, Jennifer, Kellam, Nadia, et al.
Created Date
2020

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of …

Contributors
Dye, Michaela, Redkar, Sangram, Sugar, Thomas, et al.
Created Date
2020

For the last 50 years, oscillator modeling in ranging systems has received considerable attention. Many components in a navigation system, such as the master oscillator driving the receiver system, as well the master oscillator in the transmitting system contribute significantly to timing errors. Algorithms in the navigation processor must be able to predict and compensate such errors to achieve a specified accuracy. While much work has been done on the fundamentals of these problems, the thinking on said problems has not progressed. On the hardware end, the designers of local oscillators focus on synthesized frequency and loop noise bandwidth. This …

Contributors
Echols, Justin A, Bliss, Daniel W, Tsakalis, Konstantinos S, et al.
Created Date
2020

The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have access to their data once they are appended to the chain. In these scenarios, the data owner actually loses control of the data once they are uploaded to the outside storage. Encryption-before-uploading is the way to solve this issue, however traditional encryption schemes such as AES, RSA, ECC, bring about …

Contributors
Dong, Qiuxiang, Huang, Dijiang, Sen, Arunabha, et al.
Created Date
2020

The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed system was developed in order to fluidize nanoparticles. The system was tested and the parameters optimized using two commercially available TiO2 nanoparticles: P25 and P90. The fluidization quality was assessed by determining the non-dimensional bed height as well as the non-dimensional pressure drop. The non-dimensional bed height for the nanosized …

Contributors
an, keju, Andino, Jean, Phelan, Patrick, et al.
Created Date
2019

This research summarizes the characterization of the constituent materials of a unidirectional composite for use in a finite element model. Specifically the T800s-F3900 composite from Toray Composites, Seattle, WA. Testing was carried out on cured polymer matrix provided by the manufacturer and single fiber specimen. The material model chosen for the polymer matrix was MAT 187 (Semi-Analytical Model for Polymers) which allowed for input of the tension, compression, and shear load responses. The matrix was tested in tension, compression, and shear and was assumed to be isotropic. Ultimate strengths of the matrix were found to be 10 580 psi in …

Contributors
Robbins, Joshua, Rajan, Subramaniam, Mobasher, Barzin, et al.
Created Date
2019

Research findings have shown that many computerized maintenance management systems (CMMS) are largely underutilized, often leading to the loss of efficiencies in the organization’s maintenance program. A literature review is presented of the available research in CMMS and of operations and management roles in a maintenance program. In addition, research was conducted around CMMS users to identify if any misalignments exist between management and operations. The articles selected for review offer a variety of perspectives, considerations, instructions, and noted failures involved with implementation, day to day use and reporting expectations. Through conducting a survey of both management and operations this …

Contributors
Rennert, Andrew William, Sullivan, Kenneth, Stone, Brian, et al.
Created Date
2019

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease due to potential induced degradation, etc. Several PV modules together in series makes up a string, and in a power plant there are a number of these strings in parallel which can be referred to as an array. Ideally, PV modules in a string should be identically matched to attain …

Contributors
Tahghighi, Arash, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2019

Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag ing systems. Performance of ROICs affect the quality of images obtained from IR imaging systems. Contemporary infrared imaging applications demand ROICs that can support large dynamic range, high frame rate, high output data rate, at low cost, size and power. Some of these applications are military surveillance, remote sensing in space and earth science missions and medical diagnosis. This work focuses on developing a ROIC unit cell prototype for National Aeronautics and Space Ad ministration(NASA), Jet Propulsion Laboratory’s(JPL’s) space applications. These space applications also demand high sensitivity, longer integration times(large well …

Contributors
Praveen, Subramanya Chilukuri, Bakkaloglu, Bertan, Kitchen, Jennifer, et al.
Created Date
2019

This work introduces self-organizing techniques to reduce the complexity and burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly increasing in scale globally. Technical and financial evaluations completed for power customers and for utilities identify how disruptions are occurring in conventional energy business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-specific and generalizable findings. Results indicate that net metering had a significant effect on the optimal amount of solar photovoltaics (PV) for households to install and how utilities could recover lost revenue through increasing energy rates or monthly fees. System-wide ramp rate requirements also increased …

Contributors
Janko, Samantha Ariel, Johnson, Nathan, Zhang, Wenlong, et al.
Created Date
2019

A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as a form of salience, results showed a more salient T2 increased recall, attenuating the AB. A more salient T1 did not differ from the control, suggesting the salience (increased size) of T2 is an important factor in the AB, while salience (increased size) of T1 does not affect the AB. …

Contributors
Lafko, Stacie, Becker, Vaughn, Branaghan, Russell, et al.
Created Date
2019

Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations. This dissertation discusses research aimed at understanding the role and function of empirical, computational, and theoretical granular physics approaches as they apply to helical geometries, their envelope of applicability, and the development of new laws. First, a static Archimedes screw submerged in granular material (glass beads) is analyzed using two …

Contributors
Thoesen, Andrew Lawrence, Marvi, Hamidreza, Berman, Spring, et al.
Created Date
2019

As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. …

Contributors
Branch Kelly, Marion, Chawla, Nikhilesh, Ankit, Kumar, et al.
Created Date
2019

Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits are typically more prone to security attacks compared to analog circuits, but malfunctions in digital circuitry can affect the analog performance/parameters of power management circuits. This research studies the effect that these hacks will have on the analog performance of power circuits, specifically linear and switching power regulators/converters. Apart from …

Contributors
Malakar, Pragya Priya, Kitchen, Jennifer, Ozev, Sule, et al.
Created Date
2019

This dissertation studies two outstanding microscale fluid mechanics problems: 1) mechanisms of gas production from the nanopores of shale; 2) enhanced mass flow rate in steady compressible gas flow through a micro-conduit. The dissertation starts with a study of a volumetric expansion driven drainage flow of a viscous compressible fluid from a small capillary and channel in the low Mach number limit. An analysis based on the linearized compressible Navier-Stokes equations with no-slip condition shows that fluid drainage is controlled by the slow decay of the acoustic wave inside the capillary and the no-slip flow exhibits a slip-like mass flow …

Contributors
SHEN, DI, Chen, Kangping, Herrmann, Marcus, et al.
Created Date
2019

Falls are the leading cause of fatal and non-fatal injuries in the older adult population with more than 27,000 fall related deaths reported every year[1]. Adults suffering from lower extremity arthritis have more than twice the likelihood of experiencing multiple falls resulting in increased fall-related injuries compared to healthy adults. People with lower extremity end-stage osteoarthritis(KOA), experience a number of fall risk factors such as knee instability, poor mobility, and knee pain/stiffness. At end-stage knee OA, the space between the bones in the joint of the knee is significantly reduced, resulting in bone to bone frictional wearing causing bone deformation. …

Contributors
Meza, Estefania, Honeycutt, Claire, Lockhart, Thurmon E, et al.
Created Date
2019

Machine learning has demonstrated great potential across a wide range of applications such as computer vision, robotics, speech recognition, drug discovery, material science, and physics simulation. Despite its current success, however, there are still two major challenges for machine learning algorithms: limited robustness and generalizability. The robustness of a neural network is defined as the stability of the network output under small input perturbations. It has been shown that neural networks are very sensitive to input perturbations, and the prediction from convolutional neural networks can be totally different for input images that are visually indistinguishable to human eyes. Based on …

Contributors
Yao, Houpu, Ren, Yi, Liu, Yongming, et al.
Created Date
2019

Graphs are one of the key data structures for many real-world computing applica- tions such as machine learning, social networks, genomics etc. The main challenges of graph processing include diculty in parallelizing the workload that results in work- load imbalance, poor memory locality and very large number of memory accesses. This causes large-scale graph processing to be very expensive. This thesis presents implementation of a select set of graph kernels on a multi-core architecture, Transmuter. The kernels are Breadth-First Search (BFS), Page Rank (PR), and Single Source Shortest Path (SSSP). Transmuter is a multi-tiled architec- ture with 4 tiles and …

Contributors
RENGANATHAN, SRINIDHI, CHAKRABARTI, CHAITALI, Shrivastava, Aviral, et al.
Created Date
2019

The delivery of construction projects, particularly with respect to design phase or preconstruction efforts, has changed significantly over the past twenty years. As alternative delivery methods such as Construction-Manager-at-Risk (CMAR) and Design-Build models have become more prominent, general contractors, owners, and designers have had the opportunity to take advantage of the collaborative planning opportunities that exist during the preconstruction portion of the project. While much has been written regarding the benefits of more collaborative approaches and the utilization of various tools and practices during preconstruction to mitigate risk and maximize positive outcomes, what is lesser known is how to teach …

Contributors
Kutz, Barry Thomas, Sullivan, Kenneth T, Standage, Richard, et al.
Created Date
2019

Essential knowledge of Co-continuous composite material properties are explored in this thesis. Mechanical characterization of these materials gives a detailed outlook to use them in design, manufacture and tailor make the products. Soft and hard polymer materials have extensive properties individually, but when combined to make a single structure, they give an exceptional combination of properties. In this study, Polymer materials used are in the form of Co-Continuous structures (i.e., both soft and hard polymers are continuous throughout the microstructure) fabricated into several microstructures namely, Simple Cubic (SC), Body-Centered Cubic (BCC) and Face Centered Cubic (FCC) shapes. An experimental process …

Contributors
VARAKANTHAM, MADHAVA REDDY, Yongming, Liu, Patel, Jay, et al.
Created Date
2019