Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET, US-06 drive schedules, respectively. These drive schedules have been combined into a custom drive cycle, named the AZ-01 drive schedule, designed to simulate a typical commute in the state of Arizona. The battery cell cycling is conducted at various temperature settings (0, 25, 40, and 50 °C). At 50 °C, …

Contributors
Abdelhay, Reem, Kannan, Arunachala Mada, Wishart, Jeffrey, et al.
Created Date
2018

Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical approach is required to ensure risk reduction and cost effectiveness throughout the product lifecycle. This paper will evaluate the feasibility of replacing a gas turbine auxiliary power unit on a helicopter with a direct hydrogen, air breathing, proton exchange membrane fuel cell, all while emphasizing a system engineering approach that …

Contributors
Nesheiwat, Rod Bassam, Kannan, Arunachala M, Nam, Changho, et al.
Created Date
2016

Determining the thermal conductivity of carbon gas diffusion layers used in hydrogen fuel cells is a very active topic of research. The primary driver behind this research is due to the need for development of proton exchange membrane fuels with longer usable life cycles before failure. As heat is a byproduct of the oxygen-hydrogen reaction an optimized pathway to remove the excess heat is needed to prevent thermal damage to the fuel cell as both mechanical and chemical degradation is accelerated under elevated temperatures. Commercial systems used for testing thermal conductivity are readily available, but are prohibitively expensive, ranging from …

Contributors
Sucher, Brent, Kannan, Arunachala, Hsu, Keng, et al.
Created Date
2016

There was a growing trend in the automotive market on the adoption of Hybrid Electric Vehicles (HEVs) for consumers to purchase. This was partially due to external pressures such as the effects of global warming, cost of petroleum, governmental regulations, and popularity of the vehicle type. HEV technology relied on a variety of factors which included the powertrain (PT) of the system, external driving conditions, and the type of driving pattern being driven. The core foundation for HEVs depended heavily on the battery pack and chemistry being adopted for the vehicle performance and operations. This paper focused on the effects …

Contributors
Opitz, Andrew David, Kannan, Arunachala, Mayyas, Abdel, et al.
Created Date
2016