Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


In this project, current-voltage (I-V) and Deep Level Transient Spectroscopy (DLTS) measurements are used to (a) characterize the electrical properties of Nb/p-type Si Schottky barriers, (b) identify the concentration and physical character of the electrically active defects present in the depletion region, and (c) use thermal processing to reduce the concentration or eliminate the defects. Barrier height determinations using temperature-dependent I-V measurements indicate that the barrier height decreases from 0.50 eV to 0.48 eV for anneals above 200 C. The electrically-active defect concentration measured using DLTS (deep level transient spectroscopy) drops markedly after anneals at 250 C. A significant increase …

Contributors
Krishna Murthy, Madhu, Newman, Nathan, Goryll, Michael, et al.
Created Date
2018

Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately $Qi = 170$. The resonator quality factor, approximately $Qr = 23$, is dominated by the coupling to the …

Contributors
Schroeder, Edward Ralph Aaron, Mauskopf, Philip, Chamberlin, Ralph, et al.
Created Date
2018

Lithium metal is a promising anode for the next generation lithium batteries owing to its high capacity (3860 mAh g-1) and the lowest negative reduction potential (-3.04 V). Commercial produced lithium anodes have a native rough surface which deteriorates the cycling performance of the battery. Here, an attempt has been made to deposit lithium on copper from an electrolytic cell consisting of simple electrolyte of pyridine and lithium chloride at room temperature. Water is known to react aggressively with the lithium metal, however in the electrochemical plating process, it has a significant beneficial effect in catalyzing the electrochemical reactions. The …

Contributors
Pode, Gayatri, Newman, Nathan, Marshall, Daniel, et al.
Created Date
2019

The coexistence of superconductivity and ferromagnetic orders has been the subject of study for many years. It well known that these materials possess two competing order parameters; however the two order parameters can coexist under special circumstances inducing interesting physical phenomena. In recent years the demand of ultra-low-power, high density cryogenic memories has brought considerable interest to integrate superconducting and magnetic thin films in one structure to produce novel memory elements. The operation of the device depends on the unusual electronic properties associated with the Superconductor (S) /Ferromagnetic (F) proximity effect. Niobium (Nb) based Josephson junction devices were fabricated with …

Contributors
Abd El Qader, Makram, Newman, Nathan, Rowell, John, et al.
Created Date
2016