Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Commercial buildings in the United States account for 19% of the total energy consumption annually. Commercial Building Energy Consumption Survey (CBECS), which serves as the benchmark for all the commercial buildings provides critical input for EnergyStar models. Smart energy management technologies, sensors, innovative demand response programs, and updated versions of certification programs elevate the opportunity to mitigate energy-related problems (blackouts and overproduction) and guides energy managers to optimize the consumption characteristics. With increasing advancements in technologies relying on the ‘Big Data,' codes and certification programs such as the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the Leadership …

Contributors
Naganathan, Hariharan, Chong, Oswald W, Ariaratnam, Samuel T, et al.
Created Date
2017

Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform …

Contributors
Braun, Henry Carlton, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2012