Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and get diluted to tiny concentrations in the blood, making them difficult to use as biomarkers. However, they can induce autoantibody (AAb) responses, which can amplify the signal and persist in the blood even if the antigen is gone. Circulating autoantibodies is a promising class of molecules that have potential to …

Contributors
Wang, Jie, LaBaer, Joshua, Anderson, Karen S, et al.
Created Date
2015

The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic. This thesis explores an immunodiagnostic technology based on highly scalable, non-natural sequence peptide microarrays designed to profile the humoral immune response and address the healthcare problem. The primary aim of this thesis is to explore the ability of these arrays to map continuous (linear) epitopes. I discovered that using a …

Contributors
Richer, Joshua A., Johnston, Stephen A, Woodbury, Neal, et al.
Created Date
2014