Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Subject
Date Range
2010 2020


Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of the substrate can be engineered to enhance mass-transport and light accessibility. In this work, two types of fiber architectures (i.e., dispersed polymer/titania phase or D-phase, and multi-phase polymer-core/composite-shell fibers or M-phase) were explored as effective substrate solutions for anchoring titania. These fibers were fabricated using a low-cost and scalable fiber …

Contributors
Kanth, Namrata, Song, Kenan, Tongay, Sefaattin, et al.
Created Date
2020

Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a PEEK-Carbon Nanotube composite filament for Fused Filament Fabrication (FFF) Additive Manufacturing that is ESD compliant. In addition, it demonstrates that the FFF process can be used to print tools with the required accuracy, ESD compliance and mechanical properties necessary for the electronics industry at a low rate production level. Current Additive Manufacturing …

Contributors
Churchwell, Raymond L, Sugar, Thomas, Rogers, Bradley, et al.
Created Date
2020

As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. …

Contributors
Branch Kelly, Marion, Chawla, Nikhilesh, Ankit, Kumar, et al.
Created Date
2019

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the …

Contributors
Buddha, viswa sai pavan, Tamizhmani, Govindasamy, Alford, Terry, et al.
Created Date
2018

In this project, current-voltage (I-V) and Deep Level Transient Spectroscopy (DLTS) measurements are used to (a) characterize the electrical properties of Nb/p-type Si Schottky barriers, (b) identify the concentration and physical character of the electrically active defects present in the depletion region, and (c) use thermal processing to reduce the concentration or eliminate the defects. Barrier height determinations using temperature-dependent I-V measurements indicate that the barrier height decreases from 0.50 eV to 0.48 eV for anneals above 200 C. The electrically-active defect concentration measured using DLTS (deep level transient spectroscopy) drops markedly after anneals at 250 C. A significant increase …

Contributors
Krishna Murthy, Madhu, Newman, Nathan, Goryll, Michael, et al.
Created Date
2018

Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures. As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The …

Contributors
Bernardini, Simone, Bertoni, Mariana I, Coletti, Gianluca, et al.
Created Date
2018

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential health concerns in case of exposure to popular FRs. Carbonaceous nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene oxide (GO) have been studied and applied to polymer composites and electronics extensively due to their remarkable properties. Hence CNMs are considered as potential alternative materials that present high flame retardancy. …

Contributors
Nosaka, Takayuki, Herckes, Pierre, Westerhoff, Paul, et al.
Created Date
2018

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder. Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and …

Contributors
Lujan Regalado, Irene, Chawla, Nikhilesh, Frear, Darrel, et al.
Created Date
2018

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials. This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar …

Contributors
Hashemi Amiri, Seyed Ebrahim, Ning, Cun-Zheng, Petuskey, William, et al.
Created Date
2018