Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Essential knowledge of Co-continuous composite material properties are explored in this thesis. Mechanical characterization of these materials gives a detailed outlook to use them in design, manufacture and tailor make the products. Soft and hard polymer materials have extensive properties individually, but when combined to make a single structure, they give an exceptional combination of properties. In this study, Polymer materials used are in the form of Co-Continuous structures (i.e., both soft and hard polymers are continuous throughout the microstructure) fabricated into several microstructures namely, Simple Cubic (SC), Body-Centered Cubic (BCC) and Face Centered Cubic (FCC) shapes. An experimental process …

Contributors
VARAKANTHAM, MADHAVA REDDY, Yongming, Liu, Patel, Jay, et al.
Created Date
2019

One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to receive visual information through touch. However, these approaches have two significant technical challenges: large vibration element size and the number of microcontroller pins required for vibration control, both causing excessively low resolution of the device. Here, I propose and investigate a type of high-resolution vibrotactile haptic display which overcomes these …

Contributors
Wi, Daehan, Sodemann, Angela A, Redkar, Sangram, et al.
Created Date
2019

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly …

Contributors
Miskin, Daniel L, Takahashi, Timothy T, Mignolet, Marc, et al.
Created Date
2018

The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic loading (103 to 104 s-1) under uniaxial compression and tension at multiple temperatures ranging from 298-1073 K. After mechanical tests, microstructures are analyzed and possible deformation mechanisms are proposed. Following this, strain and strain rate history effects on mechanical behavior are analyzed using a combination of quasi-static and dynamic strain …

Contributors
Turnage, Scott Andrew, Solanki, Kiran N, Rajagopalan, Jagannathan, et al.
Created Date
2017

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell …

Contributors
Koo, Bonsung, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2017

The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design …

Contributors
Tahir, Fraaz, Liu, Yongming, Jiang, Hanqing, et al.
Created Date
2017

This study uses Computational Fluid Dynamics (CFD) modeling to analyze the dependence of wind power potential and turbulence intensity on aerodynamic design of a special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three major geometric parameters of the building: (i) the height of the building, (ii) the depth of the roof-top gap, and (iii) the width of the roof-top gap. The height of the building is varied from 8 m to 24 m. Likewise, the gap depth is varied from 3 m …

Contributors
Kailkhura, Gargi, Huang, Huei-Ping, Rajagopalan, Jagannathan, et al.
Created Date
2017

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, …

Contributors
Kurapatti Ravi, Abinesh, Hao Hsu, Keng, Hildreth, Owen, et al.
Created Date
2016

Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification can be separated into two major tasks; tolerance schema generation and tolerance value specification. This thesis will focus on the latter part of automated tolerance specification, namely tolerance value allocation and analysis. The tolerance schema (sans values) required prior to these tasks have already been generated by the auto-tolerancing software. …

Contributors
Biswas, Deepanjan, Shah, Jami J, Davidson, Joseph, et al.
Created Date
2016

Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their applicable temporal and spatial scales. These limitations have motivated the development of computationally-efficient, coarse-grained methods to investigate how microstructural details affect thermophysical properties. In this dissertation, I summarize my research work in structure-based coarse-graining methods to establish the link between molecular-scale structure and macroscopic properties of two different polymers. Systematically …

Contributors
Agrawal, Vipin, Oswald, Jay, Peralta, Pedro, et al.
Created Date
2016