Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Microbial electrochemical cells (MXCs) serve as an alternative anaerobic technology to anaerobic digestion for efficient energy recovery from high-strength organic wastes such as primary sludge (PS). The overarching goal of my research was to address energy conversion from PS to useful resources (e.g. hydrogen or hydrogen peroxide) through bio- and electro-chemical anaerobic conversion processes in MXCs. First, a new flat-pate microbial electrolysis cell (MEC) was designed with high surface area anodes using carbon fibers, but without creating a large distance between the anode and the cathode (<0.5 cm) to reduce Ohmic overpotential. Through the improved design, operation, and electrochemical characterization, …

Contributors
Ki, Dong Won, Torres, César I, Rittmann, Bruce E, et al.
Created Date
2016

The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can help inform on the rates at which these contaminants enter the environment via biosolids use or wastewater effluent release to estimate the risk of adverse effects. The goals of this research project were to integrate the results obtained from the two different methods of risk assessment, (a) in silico modeling and …

Contributors
Prakash Chari, Bipin, Halden, Rolf U, Westerhoff, Paul, et al.
Created Date
2012

Microplastics are emerging to be major problem when it comes to water pollution and they pose a great threat to marine life. These materials have the potential to affect a wide range of human population since humans are the major consumers of marine organisms. Microplastics are less than 5 mm in diameter, and can escape from traditional wastewater treatment plant (WWTP) processes and end up in our water sources. Due to their small size, they have a large surface area and can react with chlorine, which it encounters in the final stages of WWTP. After the microplastics accumulate in various …

Contributors
Kelkar, Varun, Green, Matthew D, Tongay, Sefaattin, et al.
Created Date
2017

This dissertation studies the larger issue of antibiotic resistance with respect to how antibiotics are being introduced into the environment, focusing on two major anthropogenic pathways: animal husbandry for human consumption, and the recycling of wastewater and municipal sludge generated during conventional biological sewage treatment. For animal production on land (agriculture) antibiotics are often used for growth enhancement and increased feed efficiency. For animal production in water (aquaculture) antibiotics are often used as a prophylactic. I found that the same antibiotics are being used in both industries and that the same strains of human pathogens have also been isolated from …

Contributors
Done, Hansa Yi-Yun, Halden, Rolf U, Haydel, Shelley E, et al.
Created Date
2015

Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure an effective integrated bioremediation + ozonation remedial strategy to remove the overall organic carbon. Using a soil column, I conducted batch ozonation experiments for different soils and at different moisture levels. I measured multiple parameters: e.g., total petroleum hydrocarbons (TPH) and dissolved organic carbon (DOC), to build a full understanding of the …

Contributors
Chen, Tengfei, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2018

Over the past decade, there has been a revival in applied algal research and attempts at commercialization. However, the main limitation in algal commercialization is the process of cultivation, which is one of the main cost and energy burdens in producing biomass that is economically feasible for different products. There are several parameters that must be considered when growing algae, including the type of growth system and operating mode, preferred organism(s), and many other criteria that affect the process of algal cultivation. The purpose of this dissertation was to assess key variables that affect algal productivity and to improve outdoor …

Contributors
Eustance, Everett, Sommerfeld, Milton R, Fox, Peter, et al.
Created Date
2015

Fossil resources have enabled the development of the plastic industry in the last century. More recently biopolymers have been making gains in the global plastics market. Biopolymers are plastics derived from plants, primarily corn, which can function very similarly to fossil based plastics. One difference between some of the dominant biopolymers, namely polylactic acid and thermoplastic starch, and the most common fossil-based plastics is the feature of compostability. This means that biopolymers represent not only a shift from petroleum and natural gas to agricultural resources but also that these plastics have potentially different impacts resulting from alternative disposal routes. The …

Contributors
Hottle, Troy Alan, Landis, Amy E, Allenby, Braden R, et al.
Created Date
2015

This study reports on benzene and toluene biodegradation under different dissolved oxygen conditions, and the goal of this study is to evaluate and model their removal. Benzene and toluene were tested for obligate anaerobic degradation in batch reactors with sulfate as the electron acceptor. A group of sulfate-reducing bacteria capable of toluene degradation was enriched after 252 days of incubation. Those cultures, originated from anaerobic digester, were able to degrade toluene coupled to sulfate reduction with benzene coexistence, while they were not able to utilize benzene. Methanogens also were present, although their contribution to toluene biodegradation was not defined. Aerobic …

Contributors
Liu, Zhuolin, Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. …

Contributors
Tang, Youneng, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2012

The need for rapid, specific and sensitive assays that provide a detection of bacterial indicators are important for monitoring water quality. Rapid detection using biosensor is a novel approach for microbiological testing applications. Besides, validation of rapid methods is an obstacle in adoption of such new bio-sensing technologies. In this study, the strategy developed is based on using the compound 4-methylumbelliferyl glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-D-glucuronidase (GUD) enzyme to yield a fluorogenic product that can be quantified and directly related to the number of E. coli cells present in water samples. The …

Contributors
Hesari, Nikou, Abbaszadegan, Morteza, Alum, Absar, et al.
Created Date
2015