Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2018


Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across …

Contributors
Lecluse, Aurelie, Meldrum, Deirdre, Chao, Joseph, et al.
Created Date
2011

The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can help inform on the rates at which these contaminants enter the environment via biosolids use or wastewater effluent release to estimate the risk of adverse effects. The goals of this research project were to integrate the results obtained from the two different methods of risk assessment, (a) in silico modeling and …

Contributors
Prakash Chari, Bipin, Halden, Rolf U, Westerhoff, Paul, et al.
Created Date
2012

Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure an effective integrated bioremediation + ozonation remedial strategy to remove the overall organic carbon. Using a soil column, I conducted batch ozonation experiments for different soils and at different moisture levels. I measured multiple parameters: e.g., total petroleum hydrocarbons (TPH) and dissolved organic carbon (DOC), to build a full understanding of the …

Contributors
Chen, Tengfei, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2018

Over the past decade, there has been a revival in applied algal research and attempts at commercialization. However, the main limitation in algal commercialization is the process of cultivation, which is one of the main cost and energy burdens in producing biomass that is economically feasible for different products. There are several parameters that must be considered when growing algae, including the type of growth system and operating mode, preferred organism(s), and many other criteria that affect the process of algal cultivation. The purpose of this dissertation was to assess key variables that affect algal productivity and to improve outdoor …

Contributors
Eustance, Everett, Sommerfeld, Milton R, Fox, Peter, et al.
Created Date
2015

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. …

Contributors
Tang, Youneng, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2012

Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb. With the Arizona Department of Water Resources considering reliance on other sources of water other than just solely surface water, groundwater proves a reliable, supplemental source. The Salt River Project (SRP) wants to effectively treat their noncompliance groundwater sources to meet EPA compliance. Rapid small-scale column tests (RSSCTs) of two SRP controlled groundwater wells along the Eastern Canal and Consolidated Canal were designed to assist SRP in selection and future …

Contributors
Lesan, Dylan Scott, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2015

With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to incorporate with RO to change the membrane performances. Silver is biocidal, which has been used in a variety of consumer products. Recent studies showed that fabricating silver nanoparticles (AgNPs) on membrane surfaces can mitigate the biofouling problem on the membrane. Studies have shown that Ag released from the membrane in …

Contributors
Han, Bingru, Westerhoff, Paul, Perreault, Francois, et al.
Created Date
2017

To date, the production of algal biofuels is not economically sustainable due to the cost of production and the low cost of conventional fuels. As a result, interest has been shifting to high value products in the algae community to make up for the low economic potential of algal biofuels. The economic potential of high-value products does not however, eliminate the need to consider the environmental impacts. The majority of the environmental impacts associated with algal biofuels overlap with algal bioproducts in general (high-energy dewatering) due to the similarities in their production pathways. Selecting appropriate product sets is a critical …

Contributors
Barr, William James, Landis, Amy E, Westerhoff, Paul, et al.
Created Date
2016

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) …

Contributors
Venkatesan, Arjunkrishna, Halden, Rolf U, Westerhoff, Paul, et al.
Created Date
2013

Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, …

Contributors
Wender, Ben A., Seager, Thomas, Guston, David, et al.
Created Date
2016

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and …

Contributors
Sheng, Jie, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2011

Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the …

Contributors
Hoogesteijn von Reitzenstein, Natalia Virginia, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2018

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at …

Contributors
Doudrick, Kyle, Westerhoff, Paul, Halden, Rolf, et al.
Created Date
2013

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. NM loadings at the higher range of expected environmental concentrations were selected. To achieve the pseudo-equilibrium state concentration of NMs in biomass, SBR experiments needed to operate for more than three times the SRT value, approximately 18 days. Under the conditions tested, NMs had …

Contributors
Wang, Yifei, Westerhoff, Paul, Krajmalnik-Brown, Rosa, et al.
Created Date
2012

Iodide (I-) in surface and groundwaters is a potential precursor for the formation of iodinated disinfection by-products (I-DBPs) during drinking water treatment. The aim of this thesis is to provide a perspective on the sources and occurrence of I- in United States (US) source waters based on ~9200 surface water (SW) and groundwater (GW) sampling locations. The median I- concentrations observed was 16 μg/l and 14 μg/l, respectively in SW and GW. However, these samples were rarely collected at water treatment plant (WTP) intakes, where such iodide occurrence data is needed to understand impacts on DBPs. Most samples were collected …

Contributors
Sharma, Naushita, Westerhoff, Paul, Lackner, Klaus, et al.
Created Date
2018

N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature, and a method to aid in their identification. Watershed-derived precursors accounted for more of and greater variability to NDMA formation upon chloramination than polymer-derived precursors in environmental samples. Coagulation polymers are quaternary amines, which have low NDMA yield but high use rates. Watershed-derived precursors were removed up to 90% by sorption to activated carbon, but activated carbon exhibited much less …

Contributors
Hanigan, David, Westerhoff, Paul, Rittmann, Bruce, et al.
Created Date
2015

Specific inorganic and organic pollutants in water (As(V), Cr(VI), THMs, and hardness) cause health concerns or aesthetic problems. The goal of this dissertation is to demonstrate novel approaches to improve the performance of point of use and municipal activated carbon processes to provide safe and reliable water to the public at distributed centralized locations. Template Assisted Crystallization system would adjust saturation index (SI) value of TAC treated water to zero when SI value of influent water was in the range at 0.08~0.3. However, the reduction in SI when SI values were higher (e.g. 0.7~1.3) was similar to the reduction at …

Contributors
Lee, Heuidae, Westerhoff, Paul, Fox, Peter, et al.
Created Date
2018

N-Nitrosodimethylamine (NDMA), a probable human carcinogen, has been found in clouds and fogs at concentration up to 500 ng/L and in drinking water as disinfection by-product. NDMA exposure to the general public is not well understood because of knowledge gaps in terms of occurrence, formation and fate both in air and water. The goal of this dissertation was to contribute to closing these knowledge gaps on potential human NDMA exposure through contributions to atmospheric measurements and fate as well as aqueous formation processes. Novel, sensitive methods of measuring NDMA in air were developed based on Solid Phase Extraction (SPE) and …

Contributors
Zhang, Jinwei, Herckes, Pierre, Westerhoff, Paul, et al.
Created Date
2016

Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning …

Contributors
Hoogesteijn von Reitzenstein, Natalia, Westerhoff, Paul, Herckes, Pierre, et al.
Created Date
2015

The production and applications of engineered nanomaterials (ENM) has increased rapidly in the last decade, with release of ENM to the environment through the sewer system and municipal wastewater treatment plants (WWTPs) being of concern. Currently, the literature on ENM release from WWTPs and removal of ENM by WWTPs is insufficient and disorganized. There is little quantitative data on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG), from wastewater onto biomass. The removal of pristine and oxidized MWCNTs (O-MWCNTs), graphene oxide (GO), few-layer graphene (FLG) and Tween™ 20-coated Ag ENM by the interaction with …

Contributors
Yu, Zhicheng, Westerhoff, Paul, Rittmann, Bruce, et al.
Created Date
2015

The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal wastewater. Efforts to identify the significance and potential health impacts of de facto water reuse are impeded by out dated information regarding the contribution of municipal wastewater effluent to potable water supplies. This project aims to answer this research need. The overall goal of the this project is to quantify the extent of de facto reuse by developing a model …

Contributors
Rice, Jacelyn J, Westerhoff, Paul, Abbaszadegan, Morteza, et al.
Created Date
2014

Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids …

Contributors
Fischer, Natalia, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2017

Population growth and fresh water depletion challenge drinking water utilities. Surface water quality is impacted significantly by climate variability, human activities, and extreme events like natural disasters. Dissolved organic carbon (DOC) is an important water quality index and the precursor of disinfection by-products (DBPs) that varies with both hydrologic and anthropogenic factors. Granular activated carbon (GAC) is a best available technology for utilities to meet Stage 2 D/DBP rule compliance and to remove contaminants of emerging concern (CECs) (e.g., pharmaceutical, personal care products (PCPs), etc.). Utilities can operate GAC with more efficient and flexible strategies with the understanding of organic …

Contributors
Chiu, Chao-An, Westerhoff, Paul, Rittmann, Bruce, et al.
Created Date
2012

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate …

Contributors
Barry, Michelle Cummings, Barry, Michelle C, Westerhoff, Paul, et al.
Created Date
2014

Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security. This paper seeks to understand the fate of P through biofuel production and proposes a proof-of-concept process to recover P from microbial biomass. The photosynthetic cyanobacterium Synechocystis sp. PCC 6803 is found to contain 1.4% P by dry weight. After the crude lipids are extracted for biofuel processing, 92% of …

Contributors
Gifford, James Mckay, Westerhoff, Paul, Rittmann, Bruce, et al.
Created Date
2012

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 µE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 µE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to …

Contributors
Nguyen, Binh T., Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015

Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic oxidation of two model organic pollutants (methylene blue, (MB) and para-chlorobenzoic acid (pCBA)). By varying the photon fluence dose, two metrics (contaminant quantum yield (Φ), and electrical energy per order (EEO)) were used to assess photocatalytic reactor performance. A detailed literature review and experimental results demonstrated how different irradiance sources …

Contributors
Tugaoen, Heather O'Neal, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2017

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of …

Contributors
Shi, Xu, Meldrum, Deirdre R., Zhang, Weiwen, et al.
Created Date
2013

Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic simultaneously from groundwater compared to existing sorbents?” Preliminary nano-composite sorbents outperformed existing sorbents in equilibrium tests, but struggled in packed bed applications and at low influent concentrations. The synthesis process was then tailored for weak base anion exchange (WBAX) while comparing titanium dioxide against iron hydroxide nanoparticles (Ti-WBAX and Fe-WBAX, …

Contributors
Gifford, James McKay, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2016

The microbial electrochemical cell (MXC) is a novel environmental-biotechnology platform for renewable energy production from waste streams. The two main goals of MXCs are recovery of renewable energy and production of clean water. Up to now, energy recovery, Coulombic efficiency (CE), and treatment efficiency of MXCs fed with real wastewater have been low. Therefore, the overarching goal of my research was to address the main causes for these low efficiencies; this knowledge will advance MXCs technology toward commercialization. First, I found that fermentation, not anode respiration, was the rate-limiting step for achieving complete organics removal, along with high current densities …

Contributors
Mohamed, Mohamed Mahmoud Ali, Rittmann, Bruce E., Torres, César I., et al.
Created Date
2016

Activated Carbon has been used for decades to remove organics from water at large scale in municipal water treatment as well as at small scale in Point of Use (POU) and Point of Entry (POE) water treatment. This study focused on Granular Activated Carbon (GAC) and also activated Carbon Block (CB) were studied. This thesis has three related elements for organics control in drinking water. First, coagulation chemistry for Alum and Aluminum Chlorohydrate (ACH) was optimized for significant organics removal to address membrane fouling issue at a local municipal water treatment plant in Arizona. Second, Rapid Small Scale Column Tests …

Contributors
Ashani, Harsh, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2017

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies …

Contributors
Cavanagh, Bridget, Johnson, Paul C, Westerhoff, Paul, et al.
Created Date
2014

Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical formed during ozonation, however estimating the ozone demand of wastewater effluent is complicated due to the presence of reduced inorganic species. A method was developed to estimate ozone consumption only by dissolved organic compounds and predict trace organic oxidation across multiple wastewater sources. Organic and engineered nanomaterial (ENM) CEC removal …

Contributors
Sharif, Fariya, Westerhoff, Paul, Halden, Rolf, et al.
Created Date
2013

Vapor intrusion (VI), can pose health risks to building occupants. Assessment and mitigation at VI impacted sites have been guided by a site conceptual model (SCM) in which vapors originate from subsurface sources, diffuse through soil matrix and enter into a building by gas flow across foundation cracks. Alternative VI pathways and groundwater table fluctuations are not often considered. Alternative VI pathways, involving vapor transport along sewer lines and other subsurface infrastructure, have recently been found to be significant contributors to VI impacts at some sites. This study evaluated approaches for identifying and characterizing the significance of alternative VI pathways …

Contributors
Guo, Yuanming, Johnson, Paul C, Fraser, Matthew, et al.
Created Date
2015