Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


One solution to mitigating global climate change is using cyanobacteria or single-celled algae (collectively microalgae) to replace petroleum-based fuels and products, thereby reducing the net release of carbon dioxide. This work develops and evaluates a mechanistic kinetic model for light-dependent microalgal growth. Light interacts with microalgae in a variety of positive and negative ways that are captured by the model: light intensity (LI) attenuates through a microalgal culture, light absorption provides the energy and electron flows that drive photosynthesis, microalgae pool absorbed light energy, microalgae acclimate to different LI conditions, too-high LI causes damage to the cells’ photosystems, and sharp …

Contributors
Straka, Levi, Rittmann, Bruce E, Fox, Peter, et al.
Created Date
2017

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 µE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 µE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to …

Contributors
Nguyen, Binh T., Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015