Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Status
  • Public
Subject
Date Range
2011 2020


Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water at elevated temperatures, but these studies rarely explore the consequences of inorganic solutes in hydrothermal fluids. The experiments in this thesis explore new reaction pathways of organic compounds mediated by aqueous and solid phase metals, mainly Earth-abundant copper. These experiments show that copper species have the potential to oxidize benzene …

Contributors
Loescher, Grant, Shock, Everett, Hartnett, Hilairy, et al.
Created Date
2020

Nitrous oxide (N2O) is an important greenhouse gas and an oxidant respired by a diverse range of anaerobic microbes, but its sources and sinks are poorly understood. The overarching goal of my dissertation is to explore abiotic N2O formation and microbial N2O consumption across reducing environments of the early and modern Earth. By combining experiments as well as diffusion and atmospheric modeling, I present evidence that N2O production can be catalyzed on iron mineral surfaces that may have been present in shallow waters of the Archean ocean. Using photochemical models, I showed that tropospheric N2O concentrations close to modern ones …

Contributors
Buessecker, Steffen, Cadillo-Quiroz, Hinsby, Hartnett, Hilairy E, et al.
Created Date
2020

The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed system was developed in order to fluidize nanoparticles. The system was tested and the parameters optimized using two commercially available TiO2 nanoparticles: P25 and P90. The fluidization quality was assessed by determining the non-dimensional bed height as well as the non-dimensional pressure drop. The non-dimensional bed height for the nanosized …

Contributors
an, keju, Andino, Jean, Phelan, Patrick, et al.
Created Date
2019

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can be modulated by biological uptake and transformation along these flowpaths. As a result, nitrogen can accumulate in aquatic ecosystems if supply is high or if biological retention is low. Dryland and urban ecosystems offer interesting contrasts in water supply, which limits transport and biological activity in drylands, and nitrogen supply that increases with human activity. In my dissertation, I ask: …

Contributors
Handler, Amalia, Grimm, Nancy B, Helton, Ashley M, et al.
Created Date
2019

Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from biomass burning, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass versus entrained soil as a source of trace metals in burn aerosols, small-scale burn experiments were conducted using soil-free foliage representative of …

Contributors
Sherry, Alyssa Meredith, Anbar, Ariel D, Herckes, Pierre, et al.
Created Date
2019

Biodiversity is required to guarantee proper ecosystem structure and function. However, increasing anthropogenic threats are causing biodiversity loss around the world at an unprecedented rate, in what has been deemed the sixth mass extinction. To counteract this crisis, conservationists seek to improve the methods used in the design and implementation of protected areas, which help mitigate the impacts of human activities on species. Marine mammals are ecosystem engineers and important indicator species of ocean and human wellbeing. They are also disproportionally less known and more threatened than terrestrial mammals. Therefore, surrogates of biodiversity must be used to maximize their representation …

Contributors
Astudillo-Scalia, Yaiyr, Albuquerque, Fábio, Deviche, Pierre, et al.
Created Date
2019

Human endeavors move 7x more volume of earth than the world’s rivers accelerating the removal of Earth’s soil surface. Measuring anthropogenic acceleration of soil erosion requires knowledge of natural rates through the study of 10Be, but same-watershed comparisons between anthropogenically-accelerated and natural erosion rates do not exist for urbanizing watersheds. Here I show that urban sprawl from 1989 to 2013 accelerated soil erosion between 1.3x and 15x above natural rates for different urbanizing watersheds in the metropolitan Phoenix region, Sonoran Desert, USA, and that statistical modeling a century of urban sprawl indicates an acceleration of only 2.7x for the Phoenix …

Contributors
Jeong, Ara, Dorn, Ronald I., Schmeeckle, Mark, et al.
Created Date
2019

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. …

Contributors
Tahir, Sherzad Tahseen, Huang, Huei-Ping, Phelan, Patrick, et al.
Created Date
2019

Monsoon hazards routinely affect the community, economy, and environment of the American Southwest. A common link for hazard development during the North American Monsoon concerns the interplay between temperature, moisture, and wind in the vertical atmosphere controlled by an unstable monsoon circulation. This dissertation investigates vertical atmospheric patterns using in-situ sounding data, specifically, 1) environments favorable for severe hail on the Colorado Plateau, 2) significant parameters distinguishing unhealthy versus healthy ozone days in Phoenix, Arizona, and 3) vertical profile alignments associated with distinct ranges in ozone concentrations observed in Phoenix having defined health impacts. The first study (published in the …

Contributors
Malloy, Jonny William, Cerveny, Randall S, Selover, Nancy J, et al.
Created Date
2019

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of …

Contributors
Driver, Erin, Halden, Rolf, Conroy-Ben, Otakuye, et al.
Created Date
2018