Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2019


The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and …

Contributors
Ansari, Adil, Herrmann, Marcus, Peet, Yulia, et al.
Created Date
2019

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded …

Contributors
Kshitij, Abhinav, Dahm, Werner J.A., Herrmann, Marcus, et al.
Created Date
2019

In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can …

Contributors
Seyler, Sean Lee, Beckstein, Oliver, Chamberlin, Ralph, et al.
Created Date
2017

The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach …

Contributors
Smith, Clinton Elliott, Squires, Kyle D, Balaras, Elias, et al.
Created Date
2011

This work helps to explain the drag reduction mechanisms at low and moderate turbulent Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall oscillations are observed on the turbulence in both the near wall and the bulk region. Analysis of the average Reynolds Stresses at various phases of the flow is provided along with probability density functions of the fluctuating components of velocity and vorticity. The flow is also visualized to observe, qualitatively, changes in the total and fluctuating field of velocity and vorticity. Linear Stochastic Estimation is used to create a conditional eddy (associated with …

Contributors
Coxe, Daniel, Peet, Yulia, Adrian, Ronald, et al.
Created Date
2019

The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi. Results showed that column mass abundances range from 400 - 1000 kg.m2 in an area less than 60 km2 in late winter. Complete sublimation of the seasonal caps may occur later than estimated by large-scale studies and is geographically dependent. Seasonal ice depth estimates suggested variations of up to 1.5 …

Contributors
Mount, Christopher, Christensen, Philip R, Desch, Steven J, et al.
Created Date
2019

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement …

Contributors
Ding, Liuyang, Adrian, Ronald J, Frakes, David, et al.
Created Date
2018

The Jovian moon Europa's putative subsurface ocean offers one of the closest astrobiological targets for future exploration. It’s geologically young surface with a wide array of surface features aligned with distinct surface composition suggests past/present geophysical activity with implications for habitability. In this body of work, I propose a hypothesis for material transport from the ocean towards the surface via a convecting ice-shell. Geodynamical modeling is used to perform numerical experiments on a two-phase water-ice system to test the hypotheses. From these models, I conclude that it is possible for trace oceanic chemistry, entrapped into the newly forming ice at …

Contributors
Allu Peddinti, Divya, McNamara, Allen Keith, Garnero, Edward, et al.
Created Date
2017

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. …

Contributors
Tahir, Sherzad Tahseen, Huang, Huei-Ping, Phelan, Patrick, et al.
Created Date
2019

This thesis focuses on studying the interaction between floating objects and an air-water flow system driven by gravity. The system consists of an inclined channel in which a gravity driven two phase flow carries a series of floating solid objects downstream. Numerical simulations of such a system requires the solution of not only the basic Navier-Stokes equation but also dynamic interaction between the solid body and the two-phase flow. In particular, this requires embedding of dynamic mesh within the two-phase flow. A computational fluid dynamics solver, ANSYS fluent, is used to solve this problem. Also, the individual components for these …

Contributors
Mangavelli, Sai Chaitanya, Huang, Huei-Ping, kim, Jeonglae, et al.
Created Date
2018