Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can …

Contributors
Mercer, Cameron Mark, Hodges, Kip V, Robinson, Mark S, et al.
Created Date
2017

The present work covers two distinct microanalytical studies that address issues in planetary materials: (1) Genesis Na and K solar wind (SW) measurements, and (2) the effect of water on high-pressure olivine phase transformations. NASA’s Genesis mission collected SW samples for terrestrial analysis to create a baseline of solar chemical abundances based on direct measurement of solar material. Traditionally, solar abundances are estimated using spectroscopic or meteoritic data. This study measured bulk SW Na and K in two different Genesis SW collector materials (diamond-like carbon (DlC) and silicon) for comparison with these other solar references. Novel techniques were developed for …

Contributors
Rieck, Karen Dianne, Hervig, Richard L, Sharp, Thomas G, et al.
Created Date
2015