Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline …

Contributors
Rampe, Elizabeth Barger, Sharp, Thomas G, Christensen, Phillip, et al.
Created Date
2011

Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural samples, making it uninteresting for isotopic work. However, recent advances in mass spectrometry have made it possible to detect slight differences in the 238U/235U ratio, creating many exciting new opportunities for U isotopic research. Using uranium ore samples from diverse depositional settings from around the world, it is shown that …

Contributors
Brennecka, Gregory Adam, Anbar, Ariel D, Wadhwa, Meenakshi, et al.
Created Date
2011

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the …

Contributors
Sanborn, Matthew Edward, Wadhwa, Meenakshi, Hervig, Richard, et al.
Created Date
2012

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the …

Contributors
Spivak-Birndorf, Lev Jacob, Wadhwa, Meenakshi, Hervig, Richard, et al.
Created Date
2012

Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the …

Contributors
Tucker, Kera, Wadhwa, Meenakshi, Hervig, Richard, et al.
Created Date
2015

The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and isotopic investigations of different classes of meteorites and their components. In this dissertation, I have investigated a variety of isotope systematics in chondritic and achondritic meteorites to understand processes that have shaped our Solar System. Specifically, the investigations conducted here are in two main areas: 1) Hydrogen isotope systematics in a meteorite representing the freshest known sample of the martian …

Contributors
Mane, Prajkta, Wadhwa, Meenakshi, Hervig, Richard, et al.
Created Date
2016

Variations of 238U/235U in sedimentary carbonate rocks are being explored as a tool for reconstructing oceanic anoxia through time. However, the fidelity of this novel paleoredox proxy relies on characterization of uranium isotope geochemistry via laboratory experimental studies and field work in modern analog environmental settings. This dissertation systematically examines the fidelity of 238U/235U in sedimentary carbonate rocks as a paleoredox proxy focusing on the following issues: (1) U isotope fractionation during U incorporation into primary abiotic and biogenic calcium carbonates; (2) diagenetic effects on U isotope fractionation in modern shallow-water carbonate sediments; (3) the effects of anoxic depositional environments …

Contributors
Chen, Xinming, Anbar, Ariel D, Williams, Lynda B, et al.
Created Date
2018