Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Doctoral Dissertation
Subject
Date Range
2011 2019


Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions because they could have seeded early Earth with significant amounts of water and pre-biotic, organic material, their record of abiotic, aqueous, and organic geochemistry is of interest as well. CC materials previously resided on asteroidal parent bodies, relic planetesimals of Solar System formation which never accreted enough material to develop …

Contributors
Monroe, Adam Alexander, Pizzarello, Sandra, Williams, Peter, et al.
Created Date
2014

The collision between the Indian and Eurasian tectonic plates marked the onset of the rise of the Himalayan-Tibetan orogen, but also brought about profound changes to the Earth's oceans and climate. The exact sequence of events that occurred during this collision is poorly understood, leading to a wide range of estimates of its age. The Indus and Yarlung sutures are generally considered to represent the final collision between India and Eurasia, and together form a mostly continuous belt that can be traced over 2000 km along strike. In the western portions of the orogen the Karakoram Fault introduces a key …

Contributors
Borneman, Nathaniel, Hodges, Kip, Reynolds, Stephen, et al.
Created Date
2016

The origin of the solar system and formation of planets such as Earth are among the most fascinating, outstanding scientific problems. From theoretical models to natural observations, it is possible to infer a general way of how the solar system evolved from the gravitational collapse of the molecular cloud to accretion and differentiation of planetary-sized bodies. This dissertation attempts to place additional constraints on the source, distribution, and evolution of chemical variability in the early solar system, Mars, and Earth. A new method was developed for the measurement of titanium isotopes in calcium-aluminum-rich inclusions (CAIs) by laser ablation multi-collector inductively …

Contributors
Williams, Curtis Davis, Wadhwa, Meenakshi, McNamara, Allen K, et al.
Created Date
2014

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, …

Contributors
Noonan, Kathryn Alexander, Hartnett, Hilairy, Anbar, Ariel, et al.
Created Date
2012

Amazonia, inhabited and investigated for millennia, continues to astonish scientists with its cultural and natural diversity. Although Amazonia is rapidly changing, its vast and varied landscape still contains a complex natural pharmacopeia. The Amazonian tribes have accrued valuable environmental and geological knowledge that can be studied. This dissertation demonstrates that Indigenous Knowledge considered alongside Western Science can enhance our understanding of the relationship of people to geological materials and hydrological resources, and reveal mineral medicines with practical applications. I used methods from anthropology and geology to explore the geological knowledge of the Uitoto, a tribe of the Colombian Amazon. The …

Contributors
Londono, Sandra, Williams, Lynda B, Semken, Steven, et al.
Created Date
2016

Variations of 238U/235U in sedimentary carbonate rocks are being explored as a tool for reconstructing oceanic anoxia through time. However, the fidelity of this novel paleoredox proxy relies on characterization of uranium isotope geochemistry via laboratory experimental studies and field work in modern analog environmental settings. This dissertation systematically examines the fidelity of 238U/235U in sedimentary carbonate rocks as a paleoredox proxy focusing on the following issues: (1) U isotope fractionation during U incorporation into primary abiotic and biogenic calcium carbonates; (2) diagenetic effects on U isotope fractionation in modern shallow-water carbonate sediments; (3) the effects of anoxic depositional environments …

Contributors
Chen, Xinming, Anbar, Ariel D, Williams, Lynda B, et al.
Created Date
2018

Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the northwestern Indian Himalaya, where early workers suggested that sedimentary deposits of the Indus Basin molasse sequence, located in the suture zone, preserve a record of the early evolution of orogenesis, including initial collision between India and Eurasia. Recent studies have challenged this interpretation, but resolution of …

Contributors
Tripathy, Alka, Hodges, Kip V, Semken, Steven, et al.
Created Date
2011

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the …

Contributors
Spivak-Birndorf, Lev Jacob, Wadhwa, Meenakshi, Hervig, Richard, et al.
Created Date
2012

Fluorine (F) is a volatile constituent of magmas and hydrous mantle minerals. Compared to other volatile species, F is highly soluble in silicate melts, allowing F to remain in the melt during magma differentiation and rendering F less subject to disturbance during degassing upon magma ascent. Hence, the association between fluorine in basalts and fluorine in the mantle source region is more robust than for other volatile species. The ionic radius of F- is similar to that of OH- and O2-, and F may substitute for hydroxyl and oxygen in silicate minerals and melt. Fluorine is also incorporated at trace …

Contributors
Guggino, Steve Nelson, Hervig, Richard L, Donald, Burt M, et al.
Created Date
2012

Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles – carbon and strontium – on Earth, and may have once played an important role in altering Mars’ surface. Despite growing recognition of the importance of low-temperature chemical weathering, these processes are still not well understood. Debris-coated glaciers are also present on Mars, emphasizing the need to study ice-related processes in the evolution of planetary surfaces. During Earth’s history, subglacial environments are thought to have sheltered communities of microorganisms from extreme climate variations. On Amazonian …

Contributors
Rutledge, Alicia Marie, Christensen, Philip R, Shock, Everett, et al.
Created Date
2015