Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Boron concentrations and isotopic composition of phlogopite mica, amphibole, and selected coexisting anhydrous phases in mantle-derived xenoliths from the Kaapvaal Craton were measured by secondary ion mass spectrometry in an effort to better understand the B isotope geochemistry of the subcontinental lithospheric mantle (SCLM) and its implications for the global geochemical cycle of B in the mantle. These samples display a wide, and previously unrecognized, range in their boron contents and isotopic compositions reflecting a complex history involving melt depletion and metasomatism by subduction- and plume-derived components, as well as late stage isotopic exchange related to kimberlite emplacements. Micas from …

Contributors
Guild, Meghan R., Hervig, Richard L, Bell, David R, et al.
Created Date
2014

Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis in silicate glasses by secondary ion mass spectrometry (SIMS), which have not yet been established. To this end, we analyze various ion implanted basaltic and rhyolitic glasses by SIMS. We demonstrate that water content significantly affects the ion yields of 14N+ and 14N16O−, as well as the background intensity of …

Contributors
Regier, Margo Regier, Hervig, Richard L, Roggensack, Kurt, et al.
Created Date
2016

Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can …

Contributors
Mercer, Cameron Mark, Hodges, Kip V, Robinson, Mark S, et al.
Created Date
2017

Explosive mafic (basaltic) volcanism is not easily explained by current eruption models, which predict low energy eruptions from low viscosity magma due to decoupling of volatiles (gases). Sunset Crater volcano provides an example of an alkali basalt magma that produced a highly explosive sub-Plinian eruption. I investigate the possible role of magmatic volatiles in the Sunset Crater eruption through study of natural samples of trapped volatiles (melt inclusions) and experiments on mixed-volatile (H2O-CO2) solubility in alkali-rich mafic magmas. I conducted volatile-saturated experiments in six mafic magma compositions at pressures between 400 MPa and 600 MPa to investigate the influence of …

Contributors
Allison, Chelsea M, Clarke, Amanda B, Hervig, Richard L, et al.
Created Date
2018